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Note to the Instructor

You can create a variety of courses from this book, depending on
the time available and the needs and backgrounds of your students.
The book is self-contained and can be used for a systematic and
thorough study of algebra from the beginning, but with well-pre-
pared students, you could treat much of the early material as re-
view in order to concentrate on later chapters. The flowchart below
shows that chapters 6—12 are largely independent of the first chap-
ters and of one another, which allows you considerable flexibility
in designing the later parts of the course.

1. Basic Algebra
I

2. Linear and Quadratic Equations

3. Inequalities and Further Equations

I

4. Functions and Graphs 1
I

5. Functions and Graphs 2

6. Exponential Functions
and Related Topics

8. Trigonometry 11. Conic Sections 12. Linear

of Triangles Systems

I
7. Logarithms

9. Trigonometric
Functions

I

10. Complex Numbers

*Sections 10.1 and 10.2 require only chapter 2, but sections 10.3, 10.4, and 10.5 require chapters 8 and 9.

In organizing this book, my guiding principle has been to intro-
duce each topic when it would be most natural and useful. Thus,
while the material is quite standard for today’s algebra-trigonom-
etry texts, there are some deviations from current fashion in the
sequencing of the topics. For example, rational exponents are not
included in chapter 1 because they are not needed until chapter 6.
More significant is the inclusion of arithmetic and geometric pro-
gressions in the chapter on exponential functions. These progres-
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sions illuminate the relationship between their continuous ana-
logues, linear and exponential functions—a relationship which
underlies the theory of logarithms. Finally, the binomial theorem
is introduced in chapter 1, partly to set the stage for its later uses
with De Moivre’s theorem (chapter 10), but mostly to ensure that
this basic theorem is given the prominence it deserves and is not
skipped. This theorem is especially important for students who will
go on to calculus, where they will probably apply it to differentiate
x" by the delta process.

In planning your course, take advantage of the part B exercises,
which are a source of stimulating enrichment involving discovery
explorations, outlines of proofs, and non-routine applications. A
detailed discussion of the part B exercises appears in the Instruc-
tors Resource and Solutions Manual, but the important point to bear
in mind for planning purposes is that you can often use them to
serve more than one end. For example, if you want to assign prac-
tice on division of polynomials, take advantage of problems in sec-
tion 1.3 to combine division practice with discovery of the re-
mainder theorem. That way the students can participate actively in
the act of mathematical discovery, and section 3.6 (The Remainder
and Factor Theorems) will be easier to teach because you prepared
the students for it in advance.

A brief word about calculators is in order. Most of the examples
and problems in this book are designed to illustrate mathematical
concepts, and experience suggests that students grasp these most
readily when distractions, including lengthy numerical or algebraic
calculation, are minimized. Therefore most of the problems can
readily be done without a calculator, and tables of square roots,
common logarithms, and trigonometric functions are provided at
the back. Those few problems for which a calculator would be a
significant advantage are clearly marked.

Your comments, especially suggestions for improving this book,
will be most welcome.
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Note to the Student

“The great book of nature lies ever open before our eyes . . . it is
written in mathematical language . . .”"—Galileo

Galileo’s words were prophetic. Soon after he wrote them, the laws
of planetary motion and gravitation were discovered; they were
mathematical in nature. Since that beginning, mathematics has turned
out to be the key to understanding more and more of the world
around us. Today mathematics is used in many ways previously
undreamed of, such as solving scheduling problems, allocating re-
sources efficiently, and deciding where to locate factories and
warehouses. Automatic landing systems for aircraft and the CAT
scanners used so successfully in modern medicine are both based
directly on mathematics. So are error-correcting codes, which were
first developed to bring information back from space quickly and
accurately and are now also used to make beautiful digital record-
ings. The possibilities for future uses of mathematics appear at least
as dramatic as the applications we have seen to date. More than
ever before, mathematics appears to be the key to success in the
decades to come. Evidently, mathematics is a subject worth know-
ing; it merits and requires serious study. Therefore, a couple of hints
on how to study mathematics are in order.

1. Read the book. That doesn’t guarantee success, but it helps. Try
to read each section before it is covered in class. That way any
questions that arise from the reading can be cleared up in class.
Read actively, checking the arithmetic and algebra in the worked
examples.

2. Do plenty of exercises. Like sports or music, mathematics in-
volves skills, and the only way to become good at them is to
practice. That’s why this book has plenty of problems. Many of
these may be solved much like the worked examples in the pre-
ceding section of text, but others, like the miscellaneous exer-
cises at the end of each chapter and the exercises marked with
a B, go beyond routine practice to show you some of the power
and beauty of mathematics. Use the answers to odd-numbered
problems at the back of the book to check your work.

In spite of your best efforts, you may encounter the frustration
of not being able to see how to deal with a problem. This is natural
and happens even to outstanding mathematicians. {One of them,
George Polya, once said that anything you can solve in five minutes
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should not be considered a problem. That’s true in most of life; why
should mathematics be different?) If you get stuck, try asking some-
one for help, or else put the problem aside for a while and return
to it later, much as you might with a difficult crossword or picture
puzzle. Of course there is still no guarantee that you will solve the
problem, but, paradoxically, you will usually learn more from
struggling with a tough problem—even one you never solve—than
from a dozen easy ones.

As you can see, nobody can honestly promise you an easy road
to success in mathematics, but I can assure you that the subject will
richly reward your efforts. I wish you success in them.

Robert G. Stein
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Introduction

1.1

Basic
Algebra

This chapter lays the foundation for the entire book. It presents in
detail every skill you need to work with algebraic expressions. Tai-
lor your study of this material to your own mathematical back-
ground. If you encounter topics which you already know well, study
them lightly, reviewing the main ideas. Then test yourself by work-
ing some of the more difficult odd-numbered exercises and check-
ing your work. (Answers to the odd-numbered problems are given
in the back of the book, starting on page 419). If you consistently
succeed in solving these problems, then move ahead quickly, but -
move slowly and methodically through topics which are new to
you or on which you are rusty. Pay particular attention to the warked
examples. Try to work each one by yourself before studying the
solution. Your success will deepen your understanding of both the
problems and the techniques used to solve them. Furthermore, it
will make you an active participant in the learning process. This
is important; in learning mathematics, as in learning any skill, such
as skiing or playing the piano, active involvement is the key.

Number Systems

The invention of numbers is lost in the distant past, but it un-
doubtedly began with counting. Even today the numbers 1, 2, 3, 4,
5, ... are called the counting numbers. Other operations, such as
addition, subtraction, multiplication, division, measurement, rais-
ing to powers, and extracting roots, grew out of counting. Over the
centuries these new operations led to generalizations in the concept
of number. Historically, these generalizations evolved haltingly and
unevenly, but a brief review of them from a modern perspective
reveals underlying patterns.

Subtraction questions lead to expanding the system of counting
numbers to form the set of integers: ... ~4, =3, =2, -1, 0, 1, 2, 3,
4, ...




Division questions lead to a further expansion of the number sys-
tem to include all quotients of integers II—I: (n # 0). The result is the

system of rational numbers. The word “rational” comes from ‘“‘ra-
tio.” A number is rational if it can be expressed as a quotient of
integers.

We often picture numbers as points on a number line, with the
integers at regularly spaced intervals, and other numbers, a few of
which are shown in figure 1, in between.

Negative numbers Positive numbers
A AL
N
5 581 111 3
2 4 10 2 104 2 2
o i VO S | A N A R
-2 -1 0 1 2
Figure 1.

Numbers on the same side of zero as 1 are called positive, and
those on the opposite side are called negative; zero itself is neither
positive nor negative. The positive integers are the counting num-
bers. The counting numbers together with zero are sometimes called
the nonnegative integers.

The opposite of n, written —n, is the same distance from zero as
n, but in the opposite direction. Similarly, —(—n) is the opposite
of the opposite of n, namely, n itself.

Every rational number corresponds to a point on the number line.
Does every point on the number line correspond to a rational num-
ber? At first you might think so, but ancient Greeks found, to their
surprise, that certain points on the number line do not correspond
exactly to rational numbers. The basis for this discovery was the
Pythagorean theorem:*

Pythagorean Theorem

Let a, b, and c be the lengths of the sides of a right triangle,
a with c the largest as in figure 2. The longest side of a right
triangle, called the hypotenuse, is opposite the right angle.

Then ¢ = Va? + b2

Figure 2. The radical sign, V' , denotes the nonnegative square root of

*Credit for discovery of this theorem is usually given to Pythagoras, a Greek mystic
of the sixth century B.c. who travelled widely throughout the Middle East. In what
is now ltaly he founded a school devoted mainly to the study of numbers and their
role in the universe. The Pythagoreans, a secret brotherhood of students, were even-
tually viewed as a threat to the state, and Pythagoras was exiled.

It is not clear to what extent Pythagoras deserves credit for this theorem. Historical
records show it was known in ancient Babylon and China.
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the number inside. For example, if x is a nonnegative number, then
VX is the nonnegative number whose square is x. A simple proof
of the Pythagorean theorem is given in problem 29, Exercises 1.1.

Extensions of the Rationals

The Pythagorean theorem raises the issue of computing square roots.
It turns out that /2, V/3, (and in general V/n if the integer n is not
a perfect square) cannot be expressed as rational numbers. These
were the first numbers to be identified as irrational (not rational).
Today it is known that many other numbers, including most roots
of rational numbers, are irrational.

The rational and irrational numbers together constitute the set
of real numbers. Every real number corresponds to a point on the
number line, and every point on the number line corresponds to a
real number. Consequently, the number line is sometimes called
the real line

The real number system is used for most of the mathematics in
this book and in basic calculus as well. However, for some pur-
poses it is convenient to expand the concept of number to the sys-
tem of complex numbers. We shall first encounter these in chapter
2, when we deal with quadratic equations whose solutions involve
square roots of negative numbers. In chapter 10 we shall study the
system of complex numbers in more detail.

Field Properties

As the number concept expanded from the counting numbers to
the more versatile real number system, the original meanings of
basic operations were lost. Although addition of counting numbers
grows directly out of counting itself, addition of real numbers such
as V2 + 11V3 does not. Multiplication of counting numbers is
repeated addition, but products of real numbers such as

Vi +V2)

cannot be so interpreted. Evidently, the basic operations must be
re-examined in the larger system of real numbers.

One approach to this would be a thorough study of the real num-
bers, but that would lead us far from our goals. Instead we simply
give a short list of properties of real numbers which we will assume
without attempting to justify. The properties listed here are known
as the field properties. They may be used to prove many, but not
all, properties of real numbers. (Those properties which cannot be
proved using the field properties alone involve additional assump-
tions about order or “completeness.” Order is studied briefly in
sections 3.2 and 3.3. Completeness is studied in calculus but will
not be studied in this course.)

Chapter 1 ® Basic Algebra 3



Field Properties of Real Numbers

Addition Multiplication
Commutative properties. Order does not a+b=b+ a ab = ba
affect a sum or a product.
Associative properties. Grouping does not (a+b)+c=a+(b+c (abc= a(bc)
affect a sum or a product.
Identity elements. Adding 0 or multiplying 0+a=a l1-a=a
by 1 leaves every number unchanged. . )
Inverse elements. Every number a has an —at+a=0 S =il (for a #
additive inverse —a for which 0)

—a + a = 0. Every number a except 0
has a multiplicative inverse % for
which %-a = 1.
Distributive property. This property relates alb+ ¢) = ab + ac
addition to multiplication.

These properties may seem obvious to you; you often use them
informally. For example, if you add 43, 17, and 83 by first observ-
ing that 17 + 83 = 100 and then adding 43, you are using the as-
sociative and commutative properties of addition. The distributive
property is listed in between the addition and multiplication prop-
erties because it relates addition to multiplication. For example, if

- ; N a=3,b=7,and c = 4, it states that 3(7 + 4) may be evaluated

7 B either as 3-11 or as 3-7 + 3-4. Since the area of a rectangle is

the product of its length and width, this may be pictured as in
figure 3.

I : 7 I You may find it curious that the field properties do not mention

subtraction and division, which are the inverse (undoing) opera-

SIT;’I"":“;‘;T;. . tions for addition and multiplication. We define subtraction of any

number b as addition of its additive inverse —b:

———

Figure 3. The Distributive Property.
& i a — bmeans a + (—b)

Similarly, we define division by any real number ¢ (except zero)

as multiplication by the multiplicative inverse %:

i

a + cmeans a-—

c
These definitions allow us to manipulate real numbers by the usual
rules of arithmetic. Some of these rules are reviewed in the exer-

cises.

Order of Operations

A spoken phrase such as “three plus five times two” is ambiguous.
Does it mean to add 3 + 5 first, then multiply by 2, or to multiply
5-2 first, then add 3? The question is important because the dif-
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