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PREFACE

The main part of this book is an expanded version of lectures which
I gave at Sheffield University during the session 1971-2. These
lectures were intended to provide a first course of Homological
Algebra, assuming only a knowledge of the most elementary parts
of the theory of modules. The amount of time available was very
limited and ruled out any approach which required the elaborate
machinery or great generality that is sometimes associated with the
subject. The alternative, it seemed to me, was to build the course
round s number of -topics which I hoped my audience would find
inseresting, and create the necessary tools by ad hoc constructions.
Fortunmately it proved rather easy to find topics where the techniques
needed to treat one of them could also be used on the others. In the
event, the first five chapters were fully covered in the course. The
last chapter was added later and it differs from those that precede
it by including some material which, so far as I am aware, has not
previously appeared in print. This material has to do with what
are here called semi-commulative local algebras. Tt is hoped that it
may be of some interest to the specialist as well as to the beginner.

Reference has already been made ta one way in which the amount
of available time influenced the structure of the course. It had,
indeed, a second effect. In order to speed up the presentation, some
easily proved results and parts of some demonstrations were left as
exercises. Other exercises were included in order to expand the main
themes. What actually happened was that two members of the class,
Mr A. 8. McKerrow and Mr P. M. Scott, were good-natured enough
to do all the exercises and, in addition, they provided the other
participants with copies of their solutions. These solutions, edited so
as to remove differences of style, are reproduced here. However the
reader will find that his grasp of the subject is much improved if he
works out a-faér proportion of the problems for himself, rather than

"merely checks through the details of the arguments provided. The
‘more difficult exercises have beeri marked with an asterisk.

- I am mueh indebted to other mathematicians who have written
on similar or related topics, and the list of references at the end
shows the books and papers that I have consulted recently. It is a
pleasure to acknowledge the help and beneﬁt that T have derived
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viii PREFACE

from these and other sources. I have not attempted to compile a
comprehensive bibliography. Naturally the degree of my indebted-
ness varies from one author to another. I have, for example, made
much use of I. Kaplansky’s treatment of homological dimension.
Also I am very conscious of the influence which the writings of
H. Bass and R. G. Swan have had on this account.

As on other occasions, I have been very fortunate in the help that
has been given to me. Once again my secretary, Mrs E. Benson, has
converted pages of untidy manuscript into an orderly form where
the idea that they might turn into a book no longer seemed un-
reasonable. Besides this Mr A. S. McKerrow checked much of the
first draft to see that it was technically correct. Their assistance has
been extremely valuable and I am most grateful to them both.

D. G. NORTHCOTT
Sheffield
October 1972
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NOTES FOR THE READER

This opportunity is taken to summarize what the reader is assumed to
know already, and to draw his attention to any conventions or ter-
minology which may differ slightly from those to which he has been
accustomed.

All the main topics in this book have to do with rings and modules.
First a word about rings. Unless otherwise stated, these need not be
commutative, but every one is required to have an identity element.
(Usually the identity element does not have to be different from the
zero element.) When we speak of a homomorphism of one ring into
another, it is to be understood that the identity element of the former
is mapped into that of the latter. In particular, if " is a subring of a
ring A, that is if the inclusion mapping I' - A is a ring-homomorphism,
then our convention ensures that I' and A must have the same identity
element. An important subring of A is its centre. This, of course, is
composed of all elements y with the property that Ay = yA for every
Ain A '

Let A be aring. In any reference to a A-module it is always intended
that multiplication of an element of the module by the identity 1,
of A, shall leave the element of the module unchanged. In other words,
we only consider unitary modules. Note that there are two types of
A-module, namely left A-modules and right A-modules.t The system
formed by all left resp. right A-modules (and the homomorphisms
between them) is referred to as the category of left resp. right A-
modules and is denoted by ¢ resp. €%. Though use is made of the
language of Category Theory it is not at all necessary that the reader
should have previously met the definition of an abstract category.
To illustrate the language let us observe that a module over the ring
Z of integers is just the same as an (additively written) abelian group.
Further if 4 and B are two such objects, then a mapping f: 4 > B is
a homomorphism of Z-modules if and only if it is a group-homo-
morphism. A convenient way in which to describe all this is to say
that the category of Z-modules can be identified with the category of
(additively written) abelian groups.

Although we assume no general knowledge of Category Theory it is

t If the ring is commutative we do not need to make this distinetion.
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b ¢ NOTES FOR THE READER

supp?ned that the reader is familiar with the elementary theory of
modules and, on this basis, certain terms are used without explanation.
The following are typical examples: submodule, factor module; image;
kernel and cokernel (of a homomorphism); exact sequence, commutative
diagram; direct sum and direct product. In addition we take as known
the standard ssomorphism theorems and presuppose some elementary
knowledge of transfinite methods based on well-ordering and Zorn’s
Lemma. A leisurely account of these matters will be found®in (20) in
Abe list of references, should the reader wish ‘to supplement his
-knowledge.

Let f: A - B be a homomorphism of A-modules. If, in addition, f is
an injective mapping, then, of course, it is customary to say that fis a
monomorphism, We shall also say that f is monic whenever we wish to
deacribe a situation of this kind. This is done solely to expand a
limited vocabulary which otherwise could lead to tedious repetition.
For the same reason, if the homomorphism f isa surjective mapping,
then we shall say either that f is an epimorphism or that it is epic
depending on which alternative description happens to be the more
oonvenient.

Our next remarks concern notation in relation to sets and modules.
Thus if 4 is a set, then i, always denotes the identity mapping of A.
Now supposé that X and Y are sete. If X is a subset of ¥ and we wish
to indioate this, then we shall write X < Y. However, if X is a proper
subset of Y, that isif X < ¥ but X # Y, then X < ¥ will be used to
oconvey this information. ]

Turning now to modules, let A be a ring and {4,};., a family of
A-modules. ‘The family will have both a direct sum and a direct
product. The former of these will be denoted by fez A, and the latter

€.

by ‘1'[ A,. However when we‘ha.ve to do with a finite family
{74
{4,,4,,...,4,), ’
then weuse 4y @ 4, ® ... ® 4,and 4, x 4, x ... x 4, as alternatives
to @4, and 4, reepectively. Again if 4 is a A-module, then
i=1 =1 ‘

@ A or @ A will denote a direct sum in which all the summands are
fel I

equal to A and there is one of them for each member of I. Likewise
J1 4 or [T A will denote a direct product in which each factor is 4
fer ! 4 .

and there is one factor foﬁ\each element of the set 1.

[ 34



NQTES FOR THE READER xi

It is hoped that enough has now been said to.prepare the reader.
Note that the numbering of theorems, lemmas and so on is begun
afresh in each chapter. If a reference is made to a result and no chapter
or section is specified, then the result in question is to be found in the
chapter being read. In all other cases the extra information needed
for identification is provided.
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1
THE LANGUAGE OF FUNCTORS

1.1 Notation

A, ', A will denote rings with identity elements. They need not be
commutative. Z will denote the ring of integers. The category of left
(resp. right) A-modules will be denoted by €% (resp. 6%). Sometimes
it is immaterial whether we work exclusively with left A-modules or
exclusively with right A-modules. In such a case €, will denote the
category in question. When A is commutative, we make no distinction
between % and ¢%. Also we normally identify the category of
additively written abelian groups with the category of Z-modules.
Finally i, is used to denote the identity map of 4.

1.2 Bimodules

Suppose that A is both a A-module and a I"-module, the additive
structure being the same in both cases. Let us suppose that multipli-
cation (of an element of 4) by an element of A always commutes with
multiplication by an element of I'. We then say that 4 is a (A, T')-
bimodule. If, for example, A operates on the left and I' on the right,
we may indicate this by writing ,A;. If 4 and A’.are both (A, I)-
bimodules of the same type, then a mapping f: A - A’ which is simul-
taneously A-linear and I'-linear is called a bihomomorphism.

Ex;lmple 1. Every A-module is a (A, Z)-bimodule.

Example 2. If I is the centre of A, then every A-module is a (A, T')-
bimodule. ’ ‘

Example 3. A itself is a (A, A)-bimodule with one A acting on the
right and the other on the left. This is by virtue of the associative law
of multiplication.

1.3 Covariant functors

Suppose that with each module 4 in €, there is associated a module
F(A)in €, and that to each A-homomorphism f:4 - A’ there cor-

1 NFC



2 THE LANGUAGE OF FUNCTORS

responds a A-homomorphism F(f):F(A)—F(A'). Suppose further
that : ; )

(1) F(i ) =ipgforall Ain€,;

(2) F(gf) = F(g) F(f) whenever f:A> A’ and g: A’ > A" in &,.
In these circumstances we say we have a covariant functor F. 6, - €,
from A-modules to Avnodules. Simple commutative diagrams (of A-
modules and A-homomorphisms) such as

A ——— 4,

A .
A —— 4 Ay——— A,

remain commutative when a covariant functor is applied. Also if
f:A—> A’ is an isbmorphism and g: 4’ 4 is its inverse, then, for a
covariant functor F, F(f):F(A4)->F(A’) is an isomorphism and
F(g):F(4’)>F(A) is its inverse. This is because gf and fg are
identity maps.

For the remainder of section (1.3), F:€, >%, will denote a co-
variant functor. ‘ '

Definition. F is said to be ‘additive’ if whenever f,:A—> A’ and
Js: 4> A’ are A-homomorphisms, sharing a common domain A and a
common codomain A’, we have F(f, +f;) = F(f,)+ F(f,).

Note. The A-homomorphisms of 4 into 4’ form an abelian group.
This is denoted by Hom, (4, 4°). Addition in Hom 4(4, 4°) is defined
by (f,+£:) (@) = fi(a)+fy(a).

If F is additive, then it carries null homomorphisms and null
modules into null homomorphisms and null modules.

In the classical theory of modules, finite direct sums and Jinite
direct products are indistinguishable. Here this is recognized by
introducing the notion of a biproduct.

Let 4,,4,,..., 4, and 4 be A-modules and suppose we are given
homomorphisms 7;: 4; > A(1 <i < n)andnm;: 4> A4, (1 < < n). The
complete system is called a representation of 4 as a biproduct of
4,,4,,...,4,if :

(@) my0; = 8y, i.e. m;0, is a null resp. identity homomorphiem if
+ % jresp.i = j; :

() Zo,m, = identity.



COVARIANT FUNCTORS 3
In these circumstances we write variously
A=A,BA,D ... DA, (direct sum notation),
A=A,xA;x ... x A, (direct product notation),
A = A, Ay ... A, (biproduct notation),
and, more explicitly,
[oy, ...,U,;A;ﬂ,, N AW Y NIy .
We call o,: A,—»A the canonical injection (it is necessarily a mono-
morphism) and 7,: 4 > A, the canonical pro_)eam (it is neoessarily an
epimorphism).
Exercise 1.t Let [0y, ...,0,;4;my,...,m,] = Ays Age...s 4, in <.
Show that if A-Romomorphisms f;:A,— B (1 € & € n) are given, then
there exists a unigue Romomorphism f: A —+ B such that fo, = f; for
1 €1 < n. Show also that if g,:B—> A, (1 € ¢ < ») are prescribed A-
homomorphiams, then there exists a unique Aomomorphiem g: B~ A such
that mg =g for1 <4 < .
Exercise 2. Let [0,,...,0454;m,,...,m,] = A 9 4,5...0 4, in &,
~ Show that the homomorphism A, DA,D... DA, A induced by the o
and the homomorphism A—»A,xA,x...xA.‘indcwed by the m, are

both of them ssomorphismas.
Observe that if 4,, 4,, ..., 4, are given, then we can alwayl find
A,0y0,....0,a0d my, 7, ..., 7, 80 that

[0y, -0 dsmy, . m, ] = A, s dgs. .tA

» Theorem 1. Let F:€, > €, be an additive covariani functor and [

[0, On: 45my, ..., ,]—A,tA,t oA n€,. Then

[1"(01) -+ F(o,); F(4), F(m), ..., F(n,)] = F(Al)*F(A.)----*F(A.)

né,.

Proof. Apply F to the relations m,0, = 8, and T o7, = identity.
We shall now show that this property characterizes additive ©o-

variant functors.

Theorem 2. Let F:€,>%, be a covariant functor and suppose that
whenever [0, 04; A;my, M) = A, 5 Ay in 6, then

[F(0y), Foy); F(A); F(m,), F(m,)] = F(4,)s FAJin €,
In these csrcumstances F i3 addstsve.

t Bolutions to the Exercises will be found at the end of the chapter.
1-2



4 THE LANGUAGE OF FUNCTORS
Proof. Let f,,f,: A—> B be homomorphisms. Further, let
(64,0 C;m,my] = A% A.

Then [F(oy), F(o,); F(C); F(m,), F(m,)] = F(A)» F(A) and therefore
iy = Floy) F(m) + F(o,) F(m,). Defined: 4 > C byd = 0,+0,. Then
md = m(o, +0,) = 1, from which we obtain

F(m)F(d) = F(md) = F(i) = i3y
Similarly F(m,) F(d) = 15, Now

F(d) =ipeFd) = (F(oy) F(m) + Flo,) F(m,)) F(d).
Hence

F(d) = F(ay) F(m) F(d) + F(0,) F(m,) F(d)
= F(0)ipn+F(0))ip.y = F(oy) + F(ay).
Define g:C - B by g = f,m, + fom,. Then
9oy = (fim+fom)oy = fima, + fymo, = f,.
Similarly go, = f,. Furthermore gd = (f,m,+f,m,) (0, + 03) = fi+f,.
Accordingly F(f, +f,) = F(gd) = F(g) F(d) = F(g) (F(0,) + F(0)).
Thus Fy+f) = Flg) Floy) + Flg) Flary)
= F(go,)+ F(goy)
= F(f1) + F(f,).
Hence f is additive.

Theorem 3. Suppose that [0y, 0; A;my, 7)) = A, % Ay in 6,. Then the
sequences

04,5 A5 4,50 (1.3.1)
.and 04,5 A5 4,0 (1.3.2)

are exact.

Proof. We need only consider (1.3.1) and for this it suffices to show .
Kern, < Imo,. Let e Kern,. Then

a = 0,m(a)+ 0y7y(a) = oy my(a)e Im o,
Lemma 1. Suppose that Alf-;A and A:;A1 are A-homomorphisms
such that m o, = identity. Then A = Im o, ®Kern,.

Proof. Let a € A. Then m(a— o, m,(a)) = 0 and therefore
a = oym(a)+ (e —oym(a))€eImo, + Kerm,.
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Now assume that ae Im o, n Kern,, say a = 0,(a,) with a, € 4;. Then
@, = m0,(a;) = m(a) =0

whence a = 0. This shows that 4 = Imo,®Ker,;.

Theorem 4. Let O»AIZ;A 1;A2—>0 be an exact sequence in €,.
Then the following statements are equivalent:
(1) Imo, (= Kerm,) is a direct summand of 4;
(2) there exists a A-homomorphism m,: A > A, such that
m, 0y = tdentity;
(3) there exists' a A-homomorphism oy: Ay > A such that
M0, = tdentily;
(4) there exist A-homomorphisms oy: Ay~ A and n: A~ A, such that
[0, 00, 457, 7] = Ay % A,.

Proof. By the definitions and Lemma 1,
(4)=(2)= (1) and (4)=(3)=(1).

Assume (1), say 4 = Im o, @ B for some submodule B of 4. Now o,
induces an isomorphism 4, 5 Im ;. Let u:Im o, 5 A4, be its inverse.
Next m, induces an isomorphism B 3 A4,. Let v: 4, 5 B be its inverse.
Put 7, = up and o, = jv, where p: 4 ->Im o, is the projection asso-
ciated with the relation 4 = Imo, ® B and j: B> 4 is an inclusion .
mapping. Then 7,0, = identity, m, o, = 0, my0, = 0, 7,0, = identity.
Finally if ae 4, then o,m(a) is the projection of a on Ima,; and
o, My(a) is the projection of @ on B. Thus

oyma)+oymy(a) =a or o,m +o,m, = identity.

Accordingly (1) implies (4).

Definition. Let 0—>A1—‘>A—;A,,+0 be an exact sequence in €,. If

the four equivalent conditions of Theorem 4 hold, then it is called a *split

exact sequence’. -
Wenow see, in view of Theorem 3, thatif [o;, 0g; 4; 7, m,] = A, 4,,

then o m
0>4,>4->4,>0

(] ”
and 0—>A2:>A—>Al-+0

are split exact sequences. On the other hand, if 0>B—>A4 >C->0is
a split exact sequence, then we have an isomorphism 4 ~ B@ C.
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Theorem §. Let 0—>A1:;A:;A,—>O be a split exact sequence in €,
and F: €, > €, an additive covariant funcior. Then
L F(ey) Fimy)
0> F(4,)—> F(A)—> F(4,) >0
18 a split exact sequence in?A. -
Proof. Choose 0y: A, > A, m,: A > A, s0 that
[0 0',;;4 3T Mg] = 4w A,

Then, by Theorem 1, [F(,), F(o); F(A); F(n,), F(m,)] = F(4,)+F(4,)
and therefore F(oy) F(xy) ‘
0->F(d4,)—> F(A)—> F(d,) >0

is a split exact sequence by virtue of Theorem 4.

Exercise 3. In the diagram

4, 4,

oy

/

A .

A \
A, » .

suppose that m, 0y = identity and that my0, = identity. Suppose also that

4,

4,5454, and 4,5434,
are exact. Show that [0y, 005 d;my, ) = A A, »
Exercise 4. Let F :€x>€, bea covariant functor and suppose that
whenever 0>A4'>A—>A4"-50 is a split exact sequence in €\, then

0->F(A')>F(4)>F(A")>01isa split exact sequence in €,. Deduce
that F is additive, '

Let F:€,>%, be a covariant functor. Assume that whenever
0->A4'>4->A4"->0is exact in €,, then

0-—>F(A') »>F(4A)>F(4")
resp. F(4') > F(4)>F(4")>0



COVARIANT FUNCTORS 7

is exact in €,. In these circumstances we say that F is left exact resp.
right exact. Shoald it be the case that the exactness of

0+4'>4->A4">0
only implies that of F(A')-> F(4)->F(4"),

then F is said to be kalf exact. If F is both left and right exaoct, i.e. if
0->4">A4->A">0is exact always implies that

0>F(A')>F(4)>F(A4")>0

is exact, then F is said to be an exact functor.

Let F:€, »€, be a covariant functor. If F is left exact then it
preserves monomorphisms, whereas if it is right exact it preserves
epimorphisms,

Lemma 2. Suppose that the covariant functor F is left exact and that
0>4,+>A4—>4, is exact in €,. Then 0->F(4,)>F(4)->F(4,) is
exaot in €,. ‘

The proofs of this and the next two lemmas are straightforward and
will be omitted. In botl Lemmas 3 and 4, F is understood to be a
covariant functor from €, to ¥,.

Lemma 3. Suppose that F is right exact and A, > A > A,-> 0 is exact
in€,. Then F(A;)> F(A) > F(A;) >0 is ezact in €,.

Lemma 4. SuppoaethatFuexaotandAl—>A—>A,uauemaequem
in €. Then F(4,)~> F(4)~> F(4,) is exact in €,.

Theorem 6. If the covariant functor F is half exact, theh it is additive.

“Proof. Let [0,,04;4;m,m] = A,% 4, in €,. By Theorem 2, it is
. enough to show that [F(a,), F(,); F(4); F(m,), F(n,)] equals

F(4,)+ F(4,).
Now by Theorem 3 and the half exactness of F,

F(n) F(ny)
F(4,)—> F(4)—>F(4,)

F(av) F(m) i
and F(4,)—> F(A)—>F(4,)



