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Foreword
]

On behalf of the SBCCI 2001 Organizing Committee and Program Committee, we wish you a
warm welcome to Pirenépolis for the 14th Symposium on Integrated Circuits and Systems
Design. For the first time it is held jointly with SBMicro 2001, the International Conference on
Microelectronics and Packaging and the SBAC 2001, the Brazilian Symposium on Computer
Architecture. We wish you a productive and agreeable interaction with participants of those
events. SBCCI is a well established event that is now 18 years old. The first event was held in
1983 in Porto Alegre and since then traveled around the country, being located in Porto Alegre,
Gramado, Rio de Janeiro, Ouro Preto, Jaguaritna, Recife, Buzios, Natal, and Manaus. Next year
the event will be back to Porto Alegre. The Program Committee relied on several colleagues
from many different countries and continents, which contributes to the high quality of the
program and consolidates its international character. We had this year 37 papers accepted for
presentation in 10 sessions: Embedded Systems, Rapid Prototyping, Formal Methods, Codesign,
Cad & Test, Digital Design I, Digital Design II, Analog Design, Low-Power and Low-Voltage,
and Physical Design. Besides the technical sessions there will be international tutorials, panels
and, for the first time, a User Forum with special emphasis on student participation. Moreover,
this year, for the first time, SBCCI occurs in cooperation with ACM Sigda. We would like to
thank our sponsor, the Brazilian Computer Society, and the cosponsors, the International
Federation for Information Processing — IFIP WG 10.5 — and the Brazilian Microelectronics
Society, as well as all colleagues that contributed to the success of this initiative. This year
SBCCI takes place in the Brazilian Cerrado, well known for its beautiful landscapes and nice

weather. We wish you an excellent and fruitful week in Pirenpolis.

Ricardo Pezzuol Jacobi
General Chair

Anténio Ferrari and Luigi Carro
Program Committee Chairs
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Adaptive Systems-on-Chip:
Architectures, Technologies and Applications

Jiirgen Becker, Thilo Pionteck, Manfred Glesner

Darmstadt University of Technology
Institute of Microelectronic Systems
Karlstr. 15, D-64283 Darmstadt, Germany
e-mail: {becker, pionteck, glesner} @mes.tu-darmstadt.de

Abstract

The fast technological development in Very Large Scale
Integration (VLSI) has enabled chip-designers to integrate
complete electronic systems, formerly built of several sepa-
rate chips, onto one single piece of silicon. These Systems-
on-Chip (SoCs) introduce a set of various challenges for
their interdisciplinary microelectronic implementation,
from system theory (application) level over efficient CAD
methods to suitable technologies. Important aspects for the
industry are the flexibility and adaptivity of SoCs, which can
be realized by integrating reconfigurable hardware parts on
different granularities into Configurable Systems-on-Chip
(CSoCs). The paper describes the major challenges and first
approaches in architecture, design and application of appli-
cation-specific adaptive SoCs, e.g. in digital baseband pro-
cessing for future mobile radio devices.

1 Introduction

In the last years, the fast technological development in VLSI
possibilities has brought the notion to single System-on-
Chip (SoC) solutions. Trends in microelectronic systems de-
sign point to higher integration levels, smaller form factor,
lower power consumption and cost-effective implementa-
tions. The achievement of this goal has to be efficiently sup-
ported by the concurrent development of new design
methods including such aspects as flexibility, mixed-signal
system-level exploration, re-usability and top-down SoC de-
sign. ICE defines a SoC to be a single chip that contains pro-
cessing elements, application specific Intellectual Property
(IP) and storage elements to define the overall function of
the end product it supports [1]. But it seems that this defini-
tion is not quite sufficient. For example, this definition
would also apply to the first electronic calculator, which
contains a single IC, that is the entire calculator system. But
these ICs only contained about 5000 gates and, certainly,
nobody would call such an IC a SoC. In fact, such ICs
would preferably be called Application Specific Integrated
Circuit (ASIC) and SoCs can be described as an extension
of the ASIC technology where the functionality that previ-
ously required a printed circuit board is merged onto a single
silicon chip. The first SoCs appeared in the early 1990s and
consisted almost exclusively of digital logic constructions.
Today SoCs are often mixed-technology designs, including
such diverse combinations as embedded DRAM, high-per-
formance or low-power logic, analog, RF, and even more

0-7695-1333-6/01 $10.00 © 2001 IEEE

unusual technologies like Micro-ElectroMechanical Sys-
tems (MEMS) and optical input/output. But this develop-
ment also raises its problems, e. g. it takes an enormous
amount of time and effort to design a chip. With the predict-
ed shrinking in semiconductor process geometries these
problems will increase. The gap between of what can be
built (silicon capacity) and of what can be designed is wid-
ening. So new design methodologies are needed to improve
the design process to keep up with the technology improve-
ments. The cornerstone of this required change in design
methodologies will be the augmented use of parts from pre-
vious designs. The concept of using already existing parts
from previous designs can be extended by making use of
parts designed by third parties, which is called IP- or Core-
based design {9], [10]. An overview on the status and per-
spectives of SoCs and IP-based EDA can be found in [2].
Dependent on the application areas and constraints, im-
portant aspects for the microlectronic SoC candidate archi-
tectures and technologies are:
- time-to-market constraints have to be fulfilled,
- SoC implementation flexibility, e.g. risk minimization in
the case of late specification changes,
- long product life cycles, due to multi-standard / multi-
product implementation perspectives, and
- due to multi-purpose usage, high volumes of the same
SoC to be fabricated (-> cost decrease per chip).
Microelectronic system designers now have 2 major alterna-
tives for SoC integration:
- ASIC-based SoCs, consisting mainly of processor-,
memory-, and ASIC-cores, or
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Figure 1: ASIC/SoC revenues in various areas



- Configurable SoCs (CSoCs), consisting of processor-,
memory-, probably ASIC-cores, and on-chip reconfig-
urable hardware parts for customization to a particular
application.

CSoCs combine the advantages of both: ASIC-SoCs and
multichip development using standard components, e. g.
they require only minimal NRE costs, because they dont
need expensice ASIC-tools and mask sets. In the following,
recent developments and trends, as well as actual architec-
tures, technologies and applications are discussed.

2 CSoCs: Developments & Trends

As stated above, most of microelectronic SoC solutions are
a combination of ASICs, microcontrollers, and Digital Sig-
nal Processors (DSP) devices, whereas the percentage of
ASIC-based SoCs within total ASIC market is steadily in-
creasing (see figure 2). Appropriate final implementation
technologies have to be selected, whereas different imple-
mentation trade-off alternatives concerning flexibility, cost,
low power, and performance have to be considered, depen-
dent on the application and situation. Thus, new emerging
technologies like reconfigurable hardware architectures
have also to be considered as alternatives for DSP- and/or
ASIC-technologies, dependent on the required implementa-
tion trade-off. Reconfigurable hardware architectures have
been proven in different application areas [3] [4] [5] [11]
[12] to produce at least one order of magnitude in power re-
duction and increase in performance.

In the last years the ASIC/SoC markets for computer and
communication applications had explosive revenue increas-
es, compared to the industrial and autommotive areas (see
figure 1). Especially, future markets for mobile communi-
cation systems promise huge revenues and a lot of challeng-
es for the necessary microelectronic SoC solutions. 2nd
generation (2G) mobile communication systems, i.e. GSM
and 1S-95 standards, had been rigorously defined and opti-
mized to provide mainly operation for voice transmissions.
On the other hand, 3G systems, i.e. based on the UMTS
standard, will be defined to provide a transmission scheme
which is highly flexible and adaptable to new services. This
vision adds a new dimension to the challenges within the
digital baseband design, since the final microelectronic sys-
tems must be able to support such a flexibility and adaptiv-
ity to mobile terminal to accommodate new services and

% of SoC in Total ASIC

1996 1997 1998 1999 2000 2001 2002 2003 2004
Source:ICE

Figure 2: ASIC-based SoCs in total ASIC

situations easily and quickly. In figure 3 the DSP software
performance requirements for the major signal processing
tasks in next generation’s UMTS receiver is given, accord-
ing to [17]. Relative to GSM, UMTS and IS-95 will require
intensive layer 1 related operations, which cannot be per-
formed on today s processors [18]. Thus, an optimized HW/
SW partitioning of these computation-intensive tasks is
necessary,whereas the flexibility to adapt to changing stan-
dards and different operation modes has to be considered.
Since today s low power DSPs cannot afford such a perfor-
mance, the DSP load has to be reduced to release it for add-
ed value applications and to save power. Therefore,
selected computation-intensive signal processing tasks
have to be migrated from software to hardware implemen-
tation, e. g. to ASIC or reconfigurable hardware SoC parts
(see section 3). Based on this situation and future market de-
mands, now many industrial and academic CSoC products
and approaches arise [11] [12] [13] [14] [15] [16] [19] [20]
[21][22] [23]. Especially the strong industry efforts, also of
major players like Hitachi [16], indicate impressively the
perspectives of CSoCs. In the following section two select-
ed academic CSoC approaches are described and compared.

3 CSoCs: Architecture & Technologies

Future target SoC architecture may be composed of differ-
ent cores such as DSPs, microcontrollers and memories, as
well as of reconfigurable hardware and/or various ASIC
support parts, whereas the final structures result from a de-
tailed application and performance analysis while consider-
ing VLSI-oriented implementation issues. For example, the
design of mobile baseband systems involves several heter-
ogeneous areas, covering various aspects in communica-
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Figure 3: Baseband algorithm complexity [17] [18]



Figure 4: Major components of MAIA CSoC [20]

tion system application, in efficient CAD tool support, as
well as in microelectronic architectures and technology is-
sues. A good understanding of all relevant points related to
this interdisciplinary area is essential for the success of the
final product [18].
Thus, the major general goal for the development of such
application-tailored architectures is to realize flexibility vs.
power/performance trade-offs by releasing the DSP for oth-
er tasks, or by migrating functionality from ASICs to multi-
granularity reconfigurable hardware. The following, two
academic CSoC approaches will be sketched:
- the MAIA CSoC using a universal fine-grain
reconfigurable hardware part [19] [20], and
- an application-specific CSoC using a coarse-grain dy-
namically reconfigurable DReAM architecture [6] [7]

The MAIA CSoC incorporates fine-grain FPGAs in its
structure. The base architecture consists of one control pro-
cessor and other satellite units (can be processors, FPGAs
or other units such as MAC). During computation and re-
configuration sequential threads are instantiated on the con-
trol processor, which configures the satellite processors and
the on-chip reconfigurable communication network and
manages the overall control flow of applications, either in a
static compiled order, or through a dynamic real-time ker-
nel. Thus, the architecture is reconfigurable in two respects
- inter-satellite communication confgurations and the fine-
grain FPGA hardware part (see figure 4) . The MAIA pro-
cessor consists of a microprocessor core (ARMS) and 21
satellite processors: two MACs, two ALUs, eight address
generators, eight embedded memories(4 512x16bit, 4
1kx16bit) and an embedded low-energy FPGA. Connec-
tions between satellites are accomplished through 2-level
hierarchical mesh-structured reconfigurable interconnect
network. The ARMS uses an interface control unit to con-
figure and communicate data with satellites. The address
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Figure 5: Integration of DReAM within CSoCs [6]

generators and embedded memories are distributed to sup-
ply multiple parallel data streams to the computational ele-
ments. The MAIA chip was implemented using 0.25U 6-
level metal CMOS process with a supply voltage of 1V and
additional voltages of 0.4V and 1.5V, The die size of the
implementation was 5.2mmx6.7mm with 1.2 million tran-
sistors at 40 MHz with an average power dissipation of 1.5-
2 mW. The Maia CSoC is optimized for selected mobile
communication application parts, e. g. a full-rate VSELP
voice coder algorithm was implemented at 30 MHz with 5.7
GOPS/Watt [19].

An example for a CSoC with integrated coarse-grain dy-
namically reconfigurable hardware is the DReAM (Dynam-
ically Reconfigurable Architecture for future Mobile
Communication Systems), which is currently synthesized at
Darmstadt University of Technology. The DReAM archi-
tecture is designed for the requirements of future mobile
communications systems, e.g. third generation (3G) sys-
tems [6]. Especially in the application area of mobile com-
munication, standards are often changed or extended, which
requires an adaptable SoC solution. The total system view
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Figure 6: Hardware Structure of DReAM [6]
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Figure 7: Genetic Optimization for IP-Mapping

of such a SoC is shown in figure 5. On the right side of the
figure the typical SoC components like memory, DSP, and
a microcontroler are shown. They are interconnected with
an AHB bus, which is part the AMBA bus specification.
Further details about the integration of DReAM with other
SoC components can be found in [6]. The DReAM array
hardware structure itself can be seen in figure 6. Reconfig-
urable Processing Units (RPUs), which can execute neces-
sary arithmetic data manipulation for data-flow oriented
protocol parts and also can execute FSM-type operations
for control-flow oriented parts. The RPUs operate in paral-
lel and have a 16-bit fast direct local connection to their di-
rect neighbours and a 16-bit connection to the programable
global communication network. In each RPU there is a
small local memory in order to reduce the access of the
main memory. Based on DReAM datapaths synthesized

with an 0.35 pm CMOS process promising performance re-
sults are obtained for computation-intensive tasks of future
CDMA-based communication systems, e. g. for implement-
ing flexible RAKE-receiver architectures with 1.5 Mb/s
data throughput [6]. In addition, efficient IP-based mapping
techniques for DReAM including dynamic reconfiguration
features are implemented and described in the following
section, as well as an efficient rapid prototyping approach
for such application-tailored CSoC solutions [8].

4 TIP-based Mapping & Application

It is difficult to map applications onto coarse-grain dynam-
ically reconfigurable architectures using today’s available
programming and CAD tools. For developing new and
promising IP-based methods the corresponding CAD tools
also have to operate on the higher abstraction levels. Since
automatized hardware synthesis from the behavioural and
system level is still not sufficiently possible for ASICs and
FPGAs, e.g. actual universal HDLs and their correpsonding
synthesis environments are not suitable to support efficient-
ly the application mapping of complex algorithms onto dy-
namically reconfigurable hardware arrays like DReAM.
Therefore, we developed and implemented new IP-based
CAD techniques for such kind of coarse-grained regular
hardware architectures. Here, for each IP-core used within
the possible complex application scenarios several alterna-
tives of pre-synthesized IP-shapes are available in a charac-
terized library, similar to standard cell synthesis. Such IP-

timing steps —
2

1PO 1P1
Yy CMF Correlation Arm 1
J 3
1P2
\ Correlation Am 2
Al
3 1P3
Correlation Arm 3
R
1P4
Correlation Arm 4
IP-Graph pyeyiiiiig
Calculation
of Arm
Weights

Running Times and Cost Values for Different Population Sizes

Population Total Time Time Time Analyzed Best
Size

Running Floor- Routing | Genetic | Solutions | Sciution
Time | planning | (min) opt. (Costs)
{min} {min) {min)

20 | 434 [ 140 [ 248 | 14 | 962 | 255
40 | 455 | 157 | 293 [ 1,3 | 1446 | 245
60 | 895 | 299 | 532 | 50 | 2358 | 240
80 | 731261401 | 45 [ 1992 | 216
Best Solution without Clustering: 260

Figure 8: Mapping analysis of RAKE-Receiver



shapes consist of a variable number of RPUs and are real-
ized by considering the special hardware attributes and
toplogy of the DReAM array. Thus, the hardware designer
has flexibilities how to realize a certain IP-funcion and the
corresponding sophisticated and optimized pre-synthesis
steps are done in advance for each IP to be used later effi-
ciently by the architecture mapping phase (see figure 7). In
addition, it is necessary to include additional information
about data dependencies and data rates.

Global combinatoric optimization methods (genetic algo-
rithms [25]) are applied here to find an optimal combination
of the different IP-forms which creates a mapping with min-
imized hardware size and communication resources. The
genetic optimization examines efficiently the whole design
space. The result is the selection and generation of several
IP-topology combinations that are to be used in the actual
optimization step. Every chosen combination of IP-forms is
mapped onto DReAM using extended macrocell floorplan-
ning and placement methods based on shape functions
([24], see [7]), which are adapted to coarse-grained recon-
figurable array architecture topologies.

At each step by the genetic algorithm so called individuals
are created, whereas each of them is representing a particu-
lar combination of IP-forms or IP-topologies. The overall
genetic optimization process is divided into the following
major steps (see basic genetic algorithm in figure 7):

1. First, the best individuals of a generated population will
be selected using a so called fitness function. They will be
saved as an interim population.

2. Afterwards a certain number of these individuals will be
fused by a cross-over function.

3. Next, the mutation operation is performed by transform-
ing the genetic codes of a certain number of individuals
slightly.

4. Finally, for each of the newly created individuals the best
mapping and the fitness function value will be calculated.
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The optimization starts with step 1 again until 15 times the
average fitness of the population has not improved.

The fitness function represents the quality metric for the ge-
netic optimization process, which takes into account the
needed number of RPUs (c; * cost,,,,),an virtual exceed of
the allowed number of RPUs (¢, * cost,;,, , and the commu-
nication costs between IP-cores (c3 * cost yp,)-

In addition, dynamic reconfiguration allows to use areas of
a DReAM-Array at different times for different puposes,
e.g. a mobile system works on both, GMS and UMTS in
separate time steps and with different hardware allocations.
The CAD methods sketched here are able to generate the
corresponding dynamic configuration codes for the
DReAM-Array, which are dynamically accessible in the
on-chip memory of the mobile device, if needed. Thus,
CSoCs with integrated DReAM hardware can be flexible
adapted to various situations in future mobile communica-
tion systems, e.g. switching between different standards and
protocols, as well as between different bandwidth and ser-
vice requirements.

As an example of an complex application for future mobile
communication systems we examined a Rake-receiver al-
gorithm based on CDMA transmission technology. It con-
sists of 10 communicationgs IP-cores (see IP-graph in
figure 8). For each of them several alternative IP-topologies
were created in a library to use them in the optimization.
The data tranfers between the IP-cores can be devided into
4 separat non-overlapping time steps. Therefore, for this ex-
ample it is possible to optimize the necessary routing re-
sources using dynamic reconfiguration. In figure 9 the
resulting floorplans for all 4 non-overlapping time steps are
shown with dynamic reconfiguration of needed intercon-
nect allocations. The table in figure 8 shows the runtime
measurments for different population size. The use of the
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Figure 9: RAKE-Receiver Architecture Mapping Results for independent Time Steps 1 & 4



