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Series Preface

Mathematics is playing an ever more important role in the physical and biological
sciences, provoking a blurring of boundaries between scientific disciplines and a
resurgence of interest in the modern as well as the classical techniques of applied
mathematics. This renewal of interest, both in research and teaching, has led to
the establishment of the series: Texts in Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high level of
excitement on the research frontier as newer techniques, such as numerical and
symbolic computer systems, dynamical systems, and chaos, mix with and rein-
force the traditional methods of applied mathematics. Thus, the purpose of this
textbook series is to meet the current and future needs of these advances and en-
courage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate and
beginning graduate courses, and will complement the Applied Mathematical Sci-
ences (AMS) series, which will focus on advanced textbooks and research level
monographs.



Preface

This book is designed to serve as a textbook for graduate students or advanced
undergraduates studying numerical methods for the solution of partial differen-
tial equations governing wave-like flows. Although the majority of the schemes
presented in this text were introduced in either the applied-mathematics or atmos-
pheric-science literature, the focus is not on the nuts-and-bolts details of various
atmospheric models but on fundamental numerical methods that have applications
in a wide range of scientific and engineering disciplines. The prototype problems
considered include tracer transport, shallow-water flow and the evolution of inter-
nal waves in a continuously stratified fluid.

A significant fraction of the literature on numerical methods for these problems
falls into one of two categories, those books and papers that emphasize theorems
and proofs, and those that emphasize numerical experimentation. Given the un-
certainty associated with the messy compromises actually required to construct
numerical approximations to real-world fluid-dynamics problems, it is difficult to
emphasize theorems and proofs without limiting the analysis to classical numeri-
cal schemes whose practical application may be rather limited. On the other hand,
if one relies primarily on numerical experimentation it is much harder to arrive at
conclusions that extend beyond a specific set of test cases. In an attempt to es-
tablish a clear link between theory and practice, I have tried to follow a middle
course between the theorem-and-proof formalism and the reliance on numerical
experimentation. There are no formal proofs in this book, but the mathematical
properties of each method are derived in a style familiar to physical scientists. At
the same time, numerical examples are included that illustrate these theoretically
derived properties and facilitate the intercomparison of various methods.



X Preface

A general course on numerical methods for geophysical fluid dynamics might
draw on portions of the material presented in Chapters 2 through 6. Chapter 2 de-
scribes the largely classical theory of finite-difference approximations to the one-
way wave equation (or alternatively the constant-wind-speed advection equation).
The extension of these results to systems of equations, several space dimensions,
dissipative flows and nonlinear problems is discussed in Chapter 3. Chapter 4
introduces series-expansion methods with emphasis on the Fourier and spherical-
harmonic spectral methods and the finite-element method. Finite-volume methods
are discussed in Chapter 5 with particular attention devoted to methods for sim-
ulating the transport of scalar fields containing poorly resolved spatial gradients.
Semi-Lagrangian schemes are analyzed in Chapter 6. Both theoretical and applied
problems are provided at the end of each chapter. Those problems that require nu-
merical computation are marked by an asterisk.

In addition to the core material in Chapters 2 through 6, the introduction in
Chapter 1 discusses the relation between the equations governing wave-like geo-
physical flows and other types of partial differential equations. Chapter 1 con-
cludes with a short overview of the strategies for numerical approximation that
are considered in detail throughout the remainder of the book. Chapter 7 exam-
ines schemes for the approximation of slow moving waves in fluids that support
physically insignificant fast waves. The emphasis in Chapter 7 is on atmospheric
applications in which the slow wave is either an internal gravity wave and the fast
waves are sound waves, or the slow wave is a Rossby wave and the fast waves
are both gravity waves and sound waves. Chapter 8 examines the formulation of
wave-permeable boundary conditions for limited-area models with emphasis on
the shallow-water equations in one and two dimensions and on internally stratified
flow.

Many numerical methods for the simulation of internally stratified flow require
the repeated solution of elliptic equations for pressure or some closely related
variable. Due to the limitations of my own expertise and to the availability of other
excellent references I have not discussed the solution of elliptic partial differential
equations in any detail. A thumbnail sketch of some solution strategies is provided
in Section 7.1.3; the reader is referred to Chapter 5 of Ferziger and Peri¢ (1997)
for an excellent overview of methods for the solution of elliptic equations arising
in computational fluid dynamics.

I have attempted to provide sufficient references to allow the reader to fur-
ther explore the theory and applications of many of the methods discussed in the
text, but the reference list is far from encyclopedic and certainly does not include
every worthy paper in the atmospheric science or applied mathematics literature.
References to the relevant literature in other disciplines and in foreign language
journals is rather less complete.!

!'Those not familiar with the atmospheric science literature may be surprised by the number of
references to Monthly Weather Review, which despite its title, has become the primary American
journal for the publication of papers on numerical methods in atmospheric science.




Preface xi

This book would not have been written without the generous assistance of sev-
eral colleagues. Christopher Bretherton, in particular, provided many perceptive
answers to my endless questions. J. Ray Bates, Byron Boville, Michael Cullen,
Marcus Grote, Robert Higdon, Randall LeVeque, Christoph Schir, William Ska-
marock, Piotr Smolarkiewicz, and David Williamson all provided very useful
comments on individual chapters. Many students used earlier versions of this
manuscript in my courses in the Atmospheric Sciences Department at the Univer-
sity of Washington, and their feedback helped improve the clarity of the manu-
script. Two students to whom I am particularly indebted are Craig Epifanio and
Donald Slinn. I am also grateful to James Holton for encouraging me to undertake
this project.

It is my pleasure to acknowledge the many years of support for my numerical
modeling efforts provided by the Mesoscale Dynamic Meteorology Program of
the National Science Foundation. Additional support for my atmospheric simula-
tion studies has been provided by the Coastal Meteorology ARI of the Office of
Naval Research. Part of this book was completed while I was on sabbatical at the
Laboratoire d’ Aérologie of the Université Paul Sabatier in Toulouse, France, and I
thank Daniel Guedalia and Evelyne Richard for helping make that year productive
and scientifically stimulating.

As errors in the text are identified, they will be posted on the web at http:/
www. atmos.washington.edu/methods.for.waves, which can be accessed directly
or via Springer’s home page at http://www.springer-ny.com. I would be most
grateful to be advised of any typographical or other errors by electronic mail at
dale.durran@atmos.washington.edu.

Seattle, Washington DALE R. DURRAN

Cover art: The three curves plot solutions to the linearized Rossby-adjustment
problem. The governing equations and physical parameters for this problem are
identical to those given in Problem 12 of Chapter 3, except that the spatial domain
is —400 km < x < 400 km with open lateral boundaries, and the initial condition
for the free-surface displacement is h(x, ¢ = 0) = arctan (x/20 km). The curves
shown are plots of u(x, t = 943 s), u(x,t = 1222s), and u(x, ¢t = 1501 s) on an
artisically cropped portion of the sub-domain x > 0.



Contents

Series Preface

Preface

1 Introduction

1.1

1.2

1.3

Partial Differential Equations—Some Basics . . . . . ... ...
1.1.1 First-Order Hyperbolic Equations . . . . .. ... ...
1.1.2 Linear Second-Order Equations

in Two Independent Variables . . . .. ... ... ...
Wave Equations in Geophysical Fluid Dynamics . . . . . . . ..
1.2.1 HyperbolicEquations . .. ... ............
1.2.2 Filtered Equations . . . ... ... ...........
Strategies for Numerical Approximation . . . . . ... ... ..
1.3.1 Approximating Calculus with Algebra . . . . . . . ...
1.3.2 Marching Schemes . . . ... .............

Problems . . . . . . . . ...

2 Basic Finite-Difference Methods

2.1
22

23

AccuracyandConsistency . . . . . ... ... ... ...
Stability and Convergence . . . . ... .............
22.1 TheEnergyMethod . ... ...............
222 VonNeumann’sMethod . . ... ............
2.2.3 The Courant-Fredrichs-Lewy Condition . . . . . . . ..
Time-Differencing . . . . . .. ... ... ...........
2.3.1 The Oscillation Equation: Phase-Speed

and Amplitude Error . . . . . ... ... .. L.

vii

ix



Xiv

24

25

2.6

Contents

2.3.2 Single-Stage Two-Level Schemes . . . ... ... ...
233 MultistageMethods . . . . ... ............
2.3.4 Three-Level Schemes . . ... .............
2.3.5 Controlling the Leapfrog Computational Mode . . . . .
2.3.6 Higher-OrderSchemes . . . . .. ... .........
Space-Differencing . . . . . . ... ... ... ... ... ...
2.4.1 Differential-Difference Equations

and Wave Dispersion . . . . ... ... ........
2.4.2 Dissipation, Dispersion, and the Modified Equation . . .
2.43 Artificial Dissipation . . . . ... ... .........
2.44 Compact Differencing . . . . ... ...........
Combined Time- and Space-Differencing . . . . ... ... ..
2.5.1 The Discrete-Dispersion Relation . . . ... ... ...
2.5.2 The Modified Equation . . . . .. ............
2.5.3 The Lax-WendroffMethod . . ... ..........
Summary Discussion of Elementary Methods . . . . ... ...

Problems . . . . . .. ... ... ...

Beyond the One-Way Wave Equation

3.1

32

33

34

35

3.6

Systems of Equations . . . ... ... .............
311 Stability . . ... L
3.1.2 StaggeredMeshes . ... ................
Three or More Independent Variables . . ... ... ......
3.2.1 Scalar Advection in Two Dimensions . . . . ... .. .
3.2.2 Systems of Equations in Several Dimensions . . . . . . .
Splitting into Fractional Steps . . . . .. ............
3.3.1 SplitExplicitSchemes . . . ... ............
3.3.2 SplitImplicitSchemes . . . ... ... .........
3.3.3 Stabilityof SplitSchemes . . ... ...........
Diffusion, Sources,and Sinks . . . ... ............
3.41 PureDiffusion . .. ... ... ... ... .......

Linear Equations with Variable Coefficients . . . . .. ... ..
35.1 AliasingError . ... ..................
3.5.2 Conservationand Stability . . . .............
Nonlinear Instability . . . . .. .................
3.6.1 Burgers’sEquation . . .. ................
3.6.2 The Barotropic Vorticity Equation . . . . ... .. ...

Problems . . . . . . . ... ...



Contents XV

4 Series-Expansion Methods 173
4.1 Strategies for Minimizing the Residual . . . . . . .. ... ... 173
42 TheSpectralMethod . . . . ... ... ............. 176

4.2.1 Comparison with Finite-Difference Methods . . . . . . . 177
4.2.2 Improving Efficiency Using the Transform Method . . . 184
4.2.3 Conservation and the Galerkin Approximation . . . . . . 189
4.3 The Pseudospectral Method . . . . . .. ... ... ...... 191
4.4 SphericalHarmonics . . . . . . ... ... ........... 195
4.4.1 Truncating the Expansion . . ... ........... 197
4.42 Eliminationof the PoleProblem . . . . . ... ... .. 200
4.4.3 Gaussian Quadrature and the Transform Method . . . . . 202
4.4.4 Nonlinear Shallow-Water Equations . . . ... ..... 207
4.5 The Finite-ElementMethod . . . . ... ... ......... 212
4.5.1 Galerkin Approximation with Chapeau Functions . . . . 214
4.5.2 Petrov—Galerkin and Taylor-Galerkin Methods . . . . . 216
4.5.3 Quadratic Expansion Functions . . . .. ... ... .. 219
4.5.4 Hermite-Cubic Expansion Functions . . . . . . ... .. 226
4.5.5 Two-Dimensional Expansion Functions . . . . ... .. 231
Problems . . . . .. ... .. .. ... ... 234
5 Finite Volume Methods 241
5.1 Conservation Laws and Weak Solutions . . . . ... ... ... 243
5.1.1 TheRiemannProblem . . ... ... .......... 244
5.1.2 Entropy-Consistent Solutions . . . .. ... ...... 246
5.2 Finite-Volume Methods and Convergence . . . ... ... ... 249
521 Monotone Schemes . . . . ... ............ 251
522 TVDMethods . . ... ................. 252
5.3 Discontinuities in Geophysical Fluid Dynamics . . . . ... .. 254
5.4 Flux-Corrected Transport . . . . ... ... .......... 257
5.4.1 Flux Correction: The Original Proposal . . .. ... .. 259
5.42 TheZalesakCorrector . . . ... ............ 260
543 Iterative Flux Correction . . . .. ... ......... 263
5.5 Flux-LimiterMethods . . . ... ..... ... ... .. 263
5.5.1 Ensuring That the Scheme IsTVD . . . ... ... ... 264
5.5.2 Possible Flux Limiters . . . ... ... ......... 267
5.5.3 Flow Velocities of Arbitrary Sign . . . ... .... .. 271
5.6 Approximation with Local Polynomials . . . . . ... ... .. 272
5.6.1 Godunov'sMethod . . . . ................ 272
5.6.2 Piecewise-Linear Functions . . . .. ... ....... 274
5.7 Two Spatial Dimensions . . . .. ... ............. 277
571 FCTinTwoDimensions . . ... ............ 271
5.7.2 Flux-Limiter Methods for Uniform 2-DFlow . . . . . . 279
5.7.3 Nonuniform NondivergentFlow . . .. ... ... ... 282
574 ANumerical Example . . ... ............. 284

5.7.5 WhenIs a Flux Limiter Necessary? . .......... 291



Xvi

5.8

5.9

Contents

Schemes for Positive Definite Advection . . . . . . .. ... ..
58.1 AnFCTApproach . ...................
5.8.2 Antidiffusion via Upstream Differencing . . . . . . . ..
Curvilinear Coordinates . . . . . ... ... ..........

Problems . . . . . . . . . . e e e e

Semi-Lagrangian Methods

6.1 The Scalar Advection Equation . . . . .. ... ........
6.1.1 Constant Velocity . . ... ...............
6.1.2 Variable Velocity . . . . ... ... ... ........
6.2 Forcing in the LagrangianFrame . . . . . . ... .. ... ...
6.3 Systemsof Equations . .. ...................
6.3.1 Comparison with the Method of Characteristics . . . . .
6.3.2 Semi-implicit Semi-Lagrangian Schemes . . .. . . ..
6.4 Alternative Trajectories . . . .. .. ... ... ........
6.4.1 A Noninterpolating Leapfrog Scheme . . ... ... ..
6.4.2 Interpolation via Parametrized Advection . . ... ...
6.5 Eulerian or Semi-Lagrangian? . . . . . ... .. ........
Problems . . . . . . .. .. . ...

Physically Insignificant Fast Waves

7.1

7.2

73

7.4
7.5
7.6

The ProjectionMethod . . . . .. ... ... ..........
7.1.1 Forward-in-Time Implementation . .. ... ... ...
7.1.2 Leapfrog Implementation . ...............
7.1.3 Solving the Poisson Equation for Pressure . . . . . . . .
The Semi-implicit Method . . . . . .. . ... .........
7.2.1 Large Time Steps and Poor Accuracy . . . ... .. ..
722 APrototypeProblem . . . ... ... ...,
7.2.3 Semi-implicit Solution of the Shallow-Water Equations .
7.2.4 Semi-implicit Solution of the Euler Equations . . . . . .
7.2.5 Numerical Implementation . . . . . ... ........
Fractional-StepMethods . . . . . . ... ... ... ......
7.3.1 Complete Operator Splitting . . . . . .. ... .....
7.3.2 Partially SplitOperators . . . ..............
Summary of Schemes for Nonhydrostatic Models . . . . . . ..
The Hydrostatic Approximation . . . ... ...........
Primitive EquationModels . . . . .. ... ... ........
7.6.1 Pressure and o Coordinates . . . ... .........
7.6.2 Spectral Representation of the Horizontal Structure . . .
7.6.3 Vertical Differencing . . . . . ... ...........
7.6.4 EnergyConservation . . . .. ..............
7.6.5 Semi-implicit Time-Differencing . . . . . . .. ... ..

Problems . . . . . . . ... ...



Contents

8 Nonreflecting Boundary Conditions

8.1 One-DimensionalFlow. .. .. ... ..............
8.1.1 Well-Posed Initial-Boundary Value Problems. . . . . . .
8.1.2 The Radiation Condition . . . .. ... .........
8.1.3 Time-Dependent BoundaryData . . . . . ... ... ..

8.1.4 Reflections at an Artificial Boundary—
The ContinuousCase . . . . ... ... .........

8.1.5 Reflections at an Artificial Boundary—
The DiscretizedCase . . .. ... ...........
8.1.6 Stability in the Presence of Boundaries . . . . . . .. ..
8.2 Two-Dimensional Shallow-WaterFlow . . .. ... ... ...

8.2.1 One-Way Wave Equations . . . .. ... ........
8.2.2 Numerical Implementation . . . . ... .........
8.3 Two-Dimensional Stratified Flow . . . .. ... ... .....
8.3.1 Lateral Boundary Conditions . . . . . . ... ......
8.3.2 Upper Boundary Conditions . . . ... .........

8.3.3 Numerical Implementation of the Radiation Upper
Boundary Condition . . . . ... ............
8.4 Wave-AbsorbingLayers . . . . .................
85 Summary. ... .... .. ... ... ...
Problems . . . . ... .. ... ... ... ..

Appendix Numerical Miscellany
A.l1 Finite-Difference Operator Notation . . . . . ... ... .. ..
A.2 Tridiagonal Solvers . . ... ..................
A.2.1 Code for a Tridiagonal Solver . . . . ... ... ....
A.2.2 Code for a Periodic Tridiagonal Solver . . . . .. .. ..

Bibliography

Index

Xvii

395
397
397

401

402

403
409
412
414
419
419
420
424

429
431
436
437

439
439
440
440
441

443

457



1

Introduction

The possibility of deterministic weather prediction was suggested by Vilhelm
Bjerknes as early as 1904. Around the time of the First World War, Lewis Richard-
son actually attempted to produce such a forecast by manually integrating a finite-
difference approximation to the equations governing atmospheric motion. Unfor-
tunately, his calculations did not yield a reasonable forecast. Moreover, the human
labor required to obtain this disappointing result was so great that subsequent
attempts at deterministic weather prediction had to await the introduction of a
high-speed computational aid. In 1950 a team of researchers, under the direction
of Jule Charney and John von Neumann at the Institute for Advanced Study, at
Princeton, journeyed to the Aberdeen Proving Ground, where they worked for ap-
proximately twenty-four hours to coax a one-day weather forecast from the first
general-purpose electronic computer, the ENIAC.! The first computer-generated
weather forecast was surprisingly good, and its success led to the rapid growth of
a new meteorological subdiscipline, “numerical weather prediction.” These early
efforts in numerical weather prediction also began a long and fruitful collabora-
tion between numerical analysts and atmospheric scientists.2 The use of numer-
ical models in atmospheric and oceanic science has subsequently expanded into
almost all areas of current research. Numerical models are currently employed to
study phenomena as diverse as global climate change, the interaction of ocean
currents with bottom topography, and the development of rotation in tornadic
thunderstorms.

TENIAC s an acronym for Electronic Numerical Integrator and Calculator.
ZFurther details about these early weather prediction efforts may be found in Bjerknes (1904),
Richardson (1922), Charney et al. (1950), Burks and Burks (1981), and Thompson (1983).




2 1. Introduction

Many of the phenomena simulated with atmospheric and oceanic models can be
classified as wave-like flows if the terminology “wave-like” is used in the general
sense suggested by Whitham (1974), who defined a wave as “any recognizable
signal that is transferred from one part of a medium to another with a recognizable
velocity of propagation.” The purpose of this book is to present the fundamental
mathematical aspects of a wide variety of numerical methods for the simulation
of wave-like flow. The methods to be considered are typically those that have
seen some use in real-world atmospheric or ocean models, but the focus is on the
essential properties of each method and not on the details of any specific model.
The fundamental character of each scheme will be examined in standard fluid-
dynamical problems like tracer transport, shallow-water waves, and waves in an
internally stratified fluid. These are the same prototypical problems familiar to
many applied mathematicians, fluid dynamicists, and practitioners in the larger
discipline of computational fluid dynamics.

Most of the problems under investigation in the atmospheric and oceanic sci-
ences involve fluid systems with low viscosity and weak dissipation. The equa-
tions governing these flows are often nonlinear, but their solutions almost never
develop energetic shocks or discontinuities. Nevertheless, regions of scale col-
lapse do frequently occur as the velocity field stretches and deforms an initially
compact fluid parcel. The numerical methods that will be examined in this book
may therefore be distinguished from the larger family of algorithms in computa-
tional fluid mechanics in that they are particularly appropriate for low-viscosity
flows, but are not primarily concerned with the treatment of shocks.

It is assumed that the reader has already been exposed to the derivation of
the equations describing fluid flow and tracer transport. These derivations are
given in a general fluid-dynamical context in Batchelor (1967), Yih (1977), and
Bird et al. (1960), and in the context of atmospheric and oceanic science in Gill
{1982), Holton (1992), and Pedlosky (1987). The mathematical properties of these
equations and commonly used simplifications, such as the Boussinesq approxima-
tion, will be briefly reviewed in this chapter. The chapter concludes with a brief
overview of the numerical methods that will be considered in more detail through-
out the remainder of the book.

1.1 Partial Differential Equations—Some Basics

Different types of partial differential equations require different solution strate-
gies. It is therefore helpful to begin by reviewing some of the terminology used to
describe various types of partial differential equations. The order of a partial dif-
ferential equation is the order of the highest-order partial derivative that appears
in the equation. Numerical methods for the solution of time-dependent problems
are often designed to solve systems of partial differential equations in which the
time derivatives are of first order. These numerical methods can be used to solve
partial differential equations containing higher-order time derivatives by defining
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new unknown functions equal to the lower-order time derivatives of the original
unknown function and expressing the result as system of partial differential equa-
tions in which all time derivatives are of order one. For example, the second-order
partial differential equation

2
2y
X

can be expressed as the first-order system

dv oy
- — =0,
dt +v’l8x

a1 v =0.
In geophysical applications it is seldom necessary to actually formulate first-
order-in-time equations using this procedure, because suitable first-order-in-time
systems can usually be derived from fundamental physical principles.

The accurate numerical solution of equations describing wave-like flow be-
comes more difficult if the solution develops significant perturbations on spatial
scales close to the shortest scale that can be resolved by the numerical model. The
possibility of waves developing small-scale perturbations from smooth initial data
increases as the governing partial differential equation becomes more nonlinear.
A partial differential equation is linear if it is linear in the unknown functions
and their derivatives, in which case the coefficients multiplying each function or
derivative depend only on the independent variables. As an example,

ou 4 ou
at ax
is a linear first-order partial differential equation, whereas

(8u)2 + sin (ua“ =0
ot ax/)

is a nonlinear first-order partial differential equation.

Analysis techniques and solution procedures developed for linear partial differ-
ential equations can be generalized most easily to the subset of nonlinear partial
differential equations that are quasi-linear. A partial differential equation of or-
der p is quasi-linear if it is linear in the derivatives of order p; the coefficient
multiplying each pth derivative can depend on the independent variables and all
derivatives of the unknown function through order p — 1. Two examples of quasi-
linear partial differential equations are

and the vorticity equation for two-dimensional nondivergent flow

vy N Yy aViy By aviy 0
ot ox dy dy ox
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4 1. Introduction

where ¥ (x, y, ¢) is the stream function for the nondivergent velocity field and

32 82

Via 4+ —.
axz  9y?

1.1.1 First-Order Hyperbolic Equations

Many waves can be mathematically described as solutions to hyperbolic partial
differential equations. One simple example of a hyperbolic partial differential
equation is the general first-order quasi-linear equation

3
At w2 4 B w2 = it w), (1.1)
ot ax

where A, B, and C are real-valued functions with continuous first derivatives. This
equation is hyperbolic because there exists a family of real-valued curves in the x-
t plane along which the solution can be locally determined by integrating ordinary
differential equations. These curves, called characteristics, may be defined with
respect to the parameter s by the relations

dt dx
— = A, — = 1.2
ds ds 12)
The identity
du _ Ou ﬁii dudx
ds dtds 9xds
can then be used to express (1.1) as the ordinary differential equation
du
— =C. 1.3
7 (1.3)

Given the value of u at some arbitrary point (xp, fp), the coordinates of the char-
acteristic curve passing through (xp, fp) can be determined by integrating the or-
dinary differential equations (1.2). The solution along this characteristic can be
obtained by integrating the ordinary differential equation (1.3). A unique solu-
tion to (1.1) can be determined throughout some local region of the x-t plane by
specifying data for 4 along any noncharacteristic line.

In physical applications where the independent variable ¢ represents time, the
particular solution of (1.1) is generally determined by specifying initial data for
along the line + = 0. In such applications A is nonzero, and any perturbation in
the distribution of u at the point (xo, #p) translates through a neighborhood of xp

at the speed

dx B

dt A
The solutions to (1.1) are wave-like in the general sense that the perturbations in
u travel at well-defined velocities even though they may distort as they propagate.
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The evolution of the solution is particularly simple when C = 0 and B/A is some
constant value c, in which case (1.1) reduces to

du ou

o Sax =0. (1.4)
If u(x,0) = f(x), the solution to the preceding is f(x — ct), implying that
the initial perturbations in  translate without distortion at a uniform velocity c.
Equation (1.4), which is often referred to as the one-way wave equation or the
constant-wind-speed advection equation, is the simplest mathematical model for
wave propagation. Although it is quite simple, (1.4) is a very useful prototype
problem for testing numerical methods because solutions to more complex lin-
ear hyperbolic systems can often be expressed as the superposition of individual
waves governed by one-way wave equations.

A system of partial differential equations in two independent variables is hy-
perbolic if it has a complete set of characteristic curves that can in principle be
used to locally determine the solution from appropriately prescribed initial data.
As a first example, consider a constant-coefficient linear system of the form

ou " ou
atr+sza”_:ri=0’ r=1,2,...,n. (1.5)

This system may be alternatively written as

du du
= — =0,
at ax

where uppercase boldface letters represent matrices and lowercase boldface letters
denote vectors. The system is hyperbolic if there exist bounded matrices T and
T~! such that T-'AT = D, where D is a diagonal matrix with real eigenvalues

d ;. When the system is hyperbolic, it can be transformed to

av av

o TP =0 (16)
by defining v = T~ 'u. Since D is a diagonal matrix, each element v j of the vec-
tor of unknown functions may be determined by solving a simpler scalar equa-
tion of the form (1.4). Each diagonal element of D is associated with a family
of characteristic curves along which the perturbations in v; propagate at speed
dx/dt = dj;. The wave-like character of the solution can be demonstrated by
Fourier transforming (1.6) with respect to x to obtain

ov
— +ikDV =0, 1.7
o1 + ikDv (1.7)

where Vv is the Fourier transform of v and k is the wave number, or dual vari-
able. In order to satisfy (1.7), the jth component of v must be a wave of the form

R



