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PREFACE

It is appropriate to begin a work of this sort by paraphrasing a cer-
tain 19th century political economist to the effect that: A specter is
haunting the industrialized world, it is the specter of the computer.

The home and village shops and industries of 200 years ago viewed
the introduction of industrial machinery with apprehension and fear.
These machines plainly threatened the existence of the old institutions
and the threat was real. The old home and village industries perished
with the former artisans and craftsmen forming the work force of the
new factories. The social shock waves set into motion by the change are
still being felt today while we stand at the edge of yet another indus-
trial revolution which promises to have effects at least ds far reaching
as the first. It is the revolution of automation, that of the computer.

While computers were costly, cranky and unreliable contraptions we
could still maintain the posture that they would cause no fundamental
change, at least not in our time, since the cost of their use would be
prohibitive, somewhat like the posture of Lord North in the early
1770’s assuring George III that revolution in the American colonies
was unthinkable, “at least not in our time”. The appearance of the reli-
able low cost computer in the past few years has made it impossible to
hold onto this illusion any longer.

As this is being written there is an advertisement on the desk for a
small computer system in kit form which costs $345. It is not a toy but
a full usable computer, capable of automating the security and envi-
ronmental controls of a house, for example. No reasonable observer can
find any ghound to doubt that the time of mass use of computers has
arrived, but there is a catch and a big one.

The catch is well illustrated in a gruesome short story by W. W.
Jacobs, called “The Monkey’s Paw”. In this story a couple comes into
possession of a talisman or magic piece which allows them to make
three wishes. The first wish is for a large sum of money and it is ful-
filled by insurance when the couple’s son is mangled to death in the
machinery of the factory where he works. The second wish is for the
return of their son and they are then tortured by the sound of his
mangled corpse pounding at the door in the night. The third wish is
used to put their son back into his grave.



The point of this story, like many such stories of magic, is that the
agency of magic is completely literal. It does exactly what it is told to do
without regard to the consequences to the controller of the magic agen~
cy. Such stories also depend on a characteristic of human mental pro-
cesses, namely that it is difficult for us to state our desires in exact lit-
eral terms, yet computers demand that we do just that, and therein lies

.the danger in using computers (and monkey’s paws).

/The problem of communicating with a computer is not a new one of
course. It has been recognized as a problem since the beginning of the
craft but was manageable since the number of people involved was
fairly small, limited by the small number of existing computers due to
high cost. The low cost of the new systems has resulted ir their wide-
spread dissemination among computer users not equipped by previous
experience to use them effectively. The problem of bringing effective
instruction to these new users demands solution, and it is to a part of
this problem that this book is directed.

No book including this one can make an expert programmar outof a
novice, nor can any combined number of them. Like moet other signifi-
cant human skills, expertise at programming has a large component of
experience. Nothing can replace the knowledge that comes of having
done a thing successfully. Experience is the only way to put meat on
the bare bones of theoretical knowledge.

What a book can do is to guide the novice through some of the ele-
mentary solutions to problems which arise in using computers, saving
him the time and frustration attendant to the reinvention of these so-
lutions for himself. Reading about a method in a book is no substitute
for having the real knowledge that comes of experience but it is better
than no knowledge at all. An illustration of a method or solution is a
guide to solution of similar problems encountered by the working pro-
grammer.

To talk about microcomputers involves talking abeut @ microcom-
puter. To attempt to discuss a broad spectrum of machine types, or
even worse, some idealized but imaginary machine is of no use to the
beginner. It simply ctreates confusion. The example machine in this
book is therefore a particular microcomputer, the 8080 ma.nnfmtnred
by the Intel Corporation of Santa Clara, California.

The choice of the 8080 was fairly obvious. There are more 8080’s in
use at the time of writing than any other microcomputer. A book ad-
dressed to the 8080 directly therefore stands to yield the greatest bene-

"~ fit to the largest number of microcomputer users.

The particular 8080 configuration used by us was assembled by one

of the authors (HYN) from a kit manufactured by MITS Inc. of Albu-



‘guergue, New Mexico. The only peripheral device used in the mechan-
ics of programming was an ASR-33 Teletype. Certain of the examples
in later chapters make use of an analog to digital converter manu-
factured by the Bessell Corporation of Iowa City, Iowa.

The programming vehicle used throughout the book is an assembly
program of the author’s ewn manufacture. It is of the cross assembler
variety, making use of a host minicomputer to perform the actual me-
chanics of assembly of code for the 8080. This cross assembler runs on a
Computer Automation LSI/2 minicomputer. Its full source text is giv-
en in an appendix for those who may be interested in its design details.
No understanding of the workings of this cross assembler is required in
the book. :

Finally, the authors wish to express their thanks to the following
individuals and organizations who have contributed in various ways to
this book. They are, alphabetically:

Bessell Corporation Mr. Dave Methvin

Mr. Dave Bunnell MITS Inc.

Computer Automation Inc. Mr. Ed Roberts

Mrs. Jean Duke Mrs. Gale Schonfeld

Dr. Don Enemark Mr. Ted Singer

Mr. Ron Gabel Mr. Randy Smith

Mrs. Barbara Gibisch Victor Comptometer Inc.,

Mr. Sal Graziano

The Hewlett-Packard Company
Intel Corporation

Mr. Wayne Johnson

Components Division
Mr. Karl Weller
Mrs. Ruth Weller

Chicago, September 1976
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1 / BINARY OPERATIONS

Computer components have the property of being in an on or off
state. Whether we choose to call these two states on and off, one and
zero, yin and yang or set and reset is pretty much irrelevant. The fact
that there are only two states makes itself felt in every dealing with
the computer. The user is forced to think in a system in which there are
only two digits. Conventionally we choose to call these states one and
zero. :

The idea of expressing information by means of a two state code is
not a new one and predates the computer. Situations in which only two
states are allowed to express a message are familiar to the reader.
Consider: “Hang a lantern aloft in the belfry arch of the North Church
tower as a signal light. One if by land and two if by sea . . .” Or how
about “If the shade is up don’t come in. My husband is home”. In both of
these cases the agreed upon signal can only assume two states. Paul
Revere expected either one lantern or two. No lanterns or three lan-
terns was not a legitimate signal. Similarly the shade is to be either up
or down. In between is not a valid signal. Presumably this would leave
the receiver of the shade message in a dither of passionate indecision.
Morse Code is another example in which two states, dot and dash, are
used. In this case more complex information, the alphabet, is built up
from combinations of the two states, e.g., the < - - ~ code of World
War II fame, being the code for the letter V.

The two digits zero,and one can be used in a not dissimilar way to
build up more complex numerical information by using them in a
number system in which they are the only two existing digits, the so-
called binary system.

Like the decimal system with which we are familiar, the binary sys-
tem uses the position of a digit in a string of digits to indicate its value.
In decimal for example the number 329 means nine units plus twice
the base of the number system (ten) plus three times the square of the
system base (10? or 100). The positions of the digits have specific mean-
ings in decimal ag they also do in binary. The values of the places in
decimal are simply the successive powers of the number base, starting
with zero. The number 10° = 1 (any number to the zero power is one).
The first power of the base 10! = 10 the base itself, while the second

1



2 PrAcCTICAL MICROCOMPUTER PROGRAMMING

power 10? = 100, and so forth. In a sjmilar way the place values in
a binary number are the successive powers of two. The first few of
these are:

Powers of Two
2=1
=2
2=4
2=8
2¢=16
25 =32
2¢ =64
27 =128
28 = 256.

The decimal value of a binary number can be found by simply adding
up the values of the columns in which ones are found. The binary num-
ber 110 has a zero in the 2° position, and ones in the 2! and 2® positions.
Its value is therefore 2t + 2! = 4 $-2= 6. Another conversion to decimal
is shown in example 1-1.

Example 1-1

Convert the binary number11010011 to decimal.
First we write out a set of the values of the powers of two,
and then writethe digits of the binary string under the ap-
propriate powers, as: .

14

128 64 32 16 8 4 2 1
1 1 0 10011
Ones appear in the 1, 2, 16, 64 and 128’s columns, so the dec-
imal value of the number is simply the sum of these powers
of two: -

1+2+16+ 64+ 128=211

The powers of two do nbt end with 128 of course but continue indefi-
nitely. Like decimal numbers, binary numbers can be of any length.



BINARY OPERATION 3

More extensive tables of the powers of two are available in most mini
and microcomputer manuals.

It will be noticed that the number in example 1-1 above required
eight binary digits for the expression rather than the three required
for its decimal equivalent. This is not any disability as far as the com-
puter is concerned but is clumsy for the human programmer. Copying
long strings of digits is an error prone process and methods have been
developed for shortening this work. These are the so-called octal and
hexadecimal systems. These systems depend for their ease upon the
fact that converting binary to a number base which is an integral
power of two amounts only to a regrouping of the binary digits or bits.
The process is very simple. To convert the above number to octal we
split it into groups of three bits beginning at the right as:

11 010 011

These groups are then read as if they were independent quantities.
The number above is read 3—-2- 3. In writing such numbers they must
be distinguished from decimal numbers in some way, since confusion
canarise. This is done by adding a subscript which indicates the num-
ber base, in this case 8. The above number would be written: '

323, = 11010011,

A more convenient way to treat binary numbers is in base 16 or hexa-
decimal, sinee the eight bit grouping (word) of the 8080 then divides
evenly into two groups which contain equal numbers of bits. Since 16 is
the fourth power of two, the bits are grouped in fours as:

1101 0011

and the digits read as independent groups. For the rightmost group
above this poses no problem, it is a 3, but the left group, 1 10 1, has no
decimal digit equivalent. Its value is 8+ 4 + 1 =13 but we have no way
of expressing 13 as a single symbol. We therefore assign the first six
letters of the alphabet, A through F, as the symbols for the six possible
combinations of four bits that cannot be expressed as normal digits.
These values are:
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Hexadecimal Digit Values
binary decimal symbol
0000 0

0001
0010
0011
0100
0101
- 0110
0111
1000
1001
1010 10
1011 ~ 11
1100 12
1101 13
1110 14
1111 15

While this notation may seem clumsy at first it quickly grows famil-
iar. The above table can be used to convert any binary number to hexa-
decimal or vice versa, as shown in examples1-2.

COWIDNXN b WN=O
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Example 1-2

Convert the binary number 1100110101001011 to hexadeci-
mal. First the number is written in groups of four bits, as:

1100 1101 0100 1011

and the value of each read from the table. The leftmost
group is a twelve, symbol C, the next is a thirteen, symbol D,
the next 4, and the rightmost is an eleven, symbol B. The
hexadecimal value of this binary number is therefore:

CD4B

Arithmetic operations are performed on binary numbers in pretty
much the same way as on decimal numbers. Addition is done by start-
ing at the right and adding the first two digits, with the sum being
written below. If the sum is greater than the capacity of a single digit a



