PRACTICAL
MICROCOMPUTER
PROGRAMMING

Sovelitianbisbibin

The INTEL 8080

W. J. Weller
A. V. Shatzel
M. Y. Nice

PRACTICAL
MICROCOMPUTER
PROGRAMMING:

" The INTEL 8080

Northern Technology Books

S i

Copyright © 1976 by W. J. Weller, A. V. Shatzel and H. Y. Nice

All rights reserved. No part of this publication may be reproduced, copied or
transmitted in any form or by any mechanical or electronic means without
written permission of the copyright holders.

Library of Congress Catalog Card Number: 76 - 44565

PREFACE

It is appropriate to begin a work of this sort by paraphrasing a cer-
tain 19th century political economist to the effect that: A specter is
haunting the industrialized world, it is the specter of the computer.

The home and village shops and industries of 200 years ago viewed
the introduction of industrial machinery with apprehension and fear.
These machines plainly threatened the existence of the old institutions
and the threat was real. The old home and village industries perished
with the former artisans and craftsmen forming the work force of the
new factories. The social shock waves set into motion by the change are
still being felt today while we stand at the edge of yet another indus-
trial revolution which promises to have effects at least ds far reaching
as the first. It is the revolution of automation, that of the computer.

While computers were costly, cranky and unreliable contraptions we
could still maintain the posture that they would cause no fundamental
change, at least not in our time, since the cost of their use would be
prohibitive, somewhat like the posture of Lord North in the early
1770’s assuring George III that revolution in the American colonies
was unthinkable, “at least not in our time”. The appearance of the reli-
able low cost computer in the past few years has made it impossible to
hold onto this illusion any longer.

As this is being written there is an advertisement on the desk for a
small computer system in kit form which costs $345. It is not a toy but
a full usable computer, capable of automating the security and envi-
ronmental controls of a house, for example. No reasonable observer can
find any ghound to doubt that the time of mass use of computers has
arrived, but there is a catch and a big one.

The catch is well illustrated in a gruesome short story by W. W.
Jacobs, called “The Monkey’s Paw”. In this story a couple comes into
possession of a talisman or magic piece which allows them to make
three wishes. The first wish is for a large sum of money and it is ful-
filled by insurance when the couple’s son is mangled to death in the
machinery of the factory where he works. The second wish is for the
return of their son and they are then tortured by the sound of his
mangled corpse pounding at the door in the night. The third wish is
used to put their son back into his grave.

The point of this story, like many such stories of magic, is that the
agency of magic is completely literal. It does exactly what it is told to do
without regard to the consequences to the controller of the magic agen~
cy. Such stories also depend on a characteristic of human mental pro-
cesses, namely that it is difficult for us to state our desires in exact lit-
eral terms, yet computers demand that we do just that, and therein lies

.the danger in using computers (and monkey’s paws).

/The problem of communicating with a computer is not a new one of
course. It has been recognized as a problem since the beginning of the
craft but was manageable since the number of people involved was
fairly small, limited by the small number of existing computers due to
high cost. The low cost of the new systems has resulted ir their wide-
spread dissemination among computer users not equipped by previous
experience to use them effectively. The problem of bringing effective
instruction to these new users demands solution, and it is to a part of
this problem that this book is directed.

No book including this one can make an expert programmar outof a
novice, nor can any combined number of them. Like moet other signifi-
cant human skills, expertise at programming has a large component of
experience. Nothing can replace the knowledge that comes of having
done a thing successfully. Experience is the only way to put meat on
the bare bones of theoretical knowledge.

What a book can do is to guide the novice through some of the ele-
mentary solutions to problems which arise in using computers, saving
him the time and frustration attendant to the reinvention of these so-
lutions for himself. Reading about a method in a book is no substitute
for having the real knowledge that comes of experience but it is better
than no knowledge at all. An illustration of a method or solution is a
guide to solution of similar problems encountered by the working pro-
grammer.

To talk about microcomputers involves talking abeut @ microcom-
puter. To attempt to discuss a broad spectrum of machine types, or
even worse, some idealized but imaginary machine is of no use to the
beginner. It simply ctreates confusion. The example machine in this
book is therefore a particular microcomputer, the 8080 ma.nnfmtnred
by the Intel Corporation of Santa Clara, California.

The choice of the 8080 was fairly obvious. There are more 8080’s in
use at the time of writing than any other microcomputer. A book ad-
dressed to the 8080 directly therefore stands to yield the greatest bene-

"~ fit to the largest number of microcomputer users.

The particular 8080 configuration used by us was assembled by one

of the authors (HYN) from a kit manufactured by MITS Inc. of Albu-

‘guergue, New Mexico. The only peripheral device used in the mechan-
ics of programming was an ASR-33 Teletype. Certain of the examples
in later chapters make use of an analog to digital converter manu-
factured by the Bessell Corporation of Iowa City, Iowa.

The programming vehicle used throughout the book is an assembly
program of the author’s ewn manufacture. It is of the cross assembler
variety, making use of a host minicomputer to perform the actual me-
chanics of assembly of code for the 8080. This cross assembler runs on a
Computer Automation LSI/2 minicomputer. Its full source text is giv-
en in an appendix for those who may be interested in its design details.
No understanding of the workings of this cross assembler is required in
the book. :

Finally, the authors wish to express their thanks to the following
individuals and organizations who have contributed in various ways to
this book. They are, alphabetically:

Bessell Corporation Mr. Dave Methvin

Mr. Dave Bunnell MITS Inc.

Computer Automation Inc. Mr. Ed Roberts

Mrs. Jean Duke Mrs. Gale Schonfeld

Dr. Don Enemark Mr. Ted Singer

Mr. Ron Gabel Mr. Randy Smith

Mrs. Barbara Gibisch Victor Comptometer Inc.,

Mr. Sal Graziano

The Hewlett-Packard Company
Intel Corporation

Mr. Wayne Johnson

Components Division
Mr. Karl Weller
Mrs. Ruth Weller

Chicago, September 1976

TABLE OF CONTENTS

Preface
Chapter 1

Chapter 2

Chapter 3

Chapter 4

Binary Arithmetic and logical operations.

Two state codes. Powers of two. Conversion to
and from binary and decimal. Hexadecimal
notation. Binary addition. Negative binary

numbers. Ones complement. Twos complement. -

The AND function. Masking. The Inclusive
OR function. Merging. The Exclusive OR
function. Shifting. Logical shifts. Rotary
shifts.

Organization and Structure of a Computer.

Definition of memory. Definition of word and
address of a word. Memory sizes. RAM and
ROM memories. The Arithmetic and Logical
unit. Registers. CPU definition. The program
countet. The instruction register. Concept of
a pointer. Basic instruction execution cycle of
the computer. .

Machine Language Programming and the
Assembly Progra_m.

Writing binary instructions. Mnemonics for
binary instructions. Translation of symbolic
programs by an assembly program. The
source program. Labels and operands. The
assembly listing. The symbol table. The
object program. The loader. Assembler error
flags. Undefined and multiply defined
symbols. Pseudo operations. Cross assemblers.

Moving Data with 8080 Instructions.

Working registers in the 8080. Use of MOV
between registers. The ADD and SUB

HI

15

19

26

v

Chapter 5

Chapter 6

Chapter 7

CONTENTS

instructions. ORA and XRA. Use of AND.
Movement of data between registers and
memory — LDA and STA. Swapping contents
of memory locations. Movement of data
between memory and registers with MOV.
Use of the H-L pair. The DATA and DBL
pseudo-ops. Use of LHLD. Using an
incremented address pointer. The SHLD
instruction. Use of LX1. Using B-C and D-E
as pointers. LDAX and STAX. INX and DCX.

Binary Arithmetic on the 8080. 36

Definition of arithmetic flags — carry —zero—
sign. The F register. Definition of overflow.
Definition of carry. Difference between
overflow and carry. Overflow detection and
the 8080. Multiple precision numbers. Double
precision addition. Double precision
subtraction. Use of MVI. INR and DCR. The
JMP instruction. Conditional jumps. Loops.
Use of CMP. Pseudo-ops JEQ ~JNE —JAL -
JGE. Algebraic comparison. RLC and RRCG.
RAL and RAR. Pseudo-ops LLA and LRA:

Multiplication and Division.. 50

Multiplication by successive addition. Process
of software multiplication. A multiplication
loop. Use of CMA and the TCA pseudo-op.
Double precision negation. Maltiplication by
special factors. Process of software division.
Definitions of dividend, divisor, quotient and
remainder. The divide fault condition. A
software division loop. Multiple precision
multiplication and division. Division by
special factors.

Using the Stack Pointer. 63

Stack pointer as a data access pointer.
Loading the stack pointer. Entering data into
the stack — PUSH. The F register. Program

Chapter 8

Chapter 9

Chapter 10

CONTENTS

Status Word. Retrieving Stack data—POP.
Use of PUSH and POP to swap register pair
contents. Use of POP for direct loading of
double precision data. SPHL instruction.
Stack overflow problem.

Subroutines.

Commonly required instruction sequences.
Use of LXI and PCHL as subroutine call. The
CALL instruction. The RET instruction. A
multiplication subroutine. A division
subroutine. Subroutine argument transfer.
Arguments directly in calling sequence.
Addresses of arguments in calling sequence —
ROM requirements.

Arrays and tables.

Definition of an array. Use of RES pseudo-op.
Searching an array for maximum and
minimum. Movement of an array. The EQU
pseudo-op. Reversing an array in memory.
The sorting process —bubble sort. A bubble
sort subroutine. Searching an array of
character strings. Use of ASC pseudo-op.
More vse of EQU. The.table lookup process.
Use of table lookup for mathematical
functions —a trigonometric tangent
subroutine.

Converting to binary.

Decimal forms—BCD and ASCII. Isolating
BCD:from ASCII. Special multiplication by
10. Use of successive multiplication to
convért a two digit decimal number to binary.
A multiply and add subroutine. Validity
checks. Check for legal decimal range.
Checking for overflow during conversion.
Double precision conversion. Conversion of
hexadecimal to binary.

VI

Chapter 11

Chapter 12

Chapter 13

CONTENTS

Converting from Binary

Conversion to decimal by division. Conversion
to decimal by successive subtraction.
Conversion of an unsigned magnitude by
carry sense. Conversion of signed number by
sign sense. Conversion of double precision
numbers. A double precision conversion
subroutine. Conversion to external
hexadecimal. A binary-hexadecimal
conversion subroutine. Conversion from
binary to an external digit string.

Basic Input/Output — Communication
with a Terminal

Elementary I/O functions — control —sense —
data transfer. The device address. The
peripheral interface. Use of IN and OUT. The
peripheral status word. Programmed delay
using the ready/not ready flag. Use of EQU
to define device addresses. A character
printing subroutine. Saving A and the PSW
on the stack. Printing strings. A string
printing subroutine. Multi-line output.
Order of carriage return and line feed.

Input status. A character read subroutine. A
string read subroutine. The wait loop
problem. Concept of the interrupt system as
ready flag monitor. Initialization of I/0
device interface.

Controlling a Complex Peripheral —- The
Victor Matrix Printer ’

Physical description of the Victor Matrix
Printer. Necessary elements of control.
Description of function of 6820 peripheral
interface adapter. Using the 6820 for an LED
display. Initialization of the 1/0 port. Setting
up the port for the Victor printer. Driving the
printer. English text and symbols. Vertical
resolution limitations. The Cyrillic alphabet
bit patterns — RUSKII code. The table lookup

102

112

126

Chapter 14

Chapter 15

Chapter 16

CONTENTS

process for Cyrillic characters. Integration of
subroutines into a complete printer driver.
Sample text in the Cyrillic alphabet. The full
Cyrillic alphabet printed by the Victor
Matrix printer.

Decimal Arithmetic on the 8080.

Decimal vs. binary arithmetic. Addition of
BCD numbers. Conditions for BCD carries.

The auxiliary carry bit. The DAA instruction.

Adjustment conditions for BCD sums.
Example of 2 digit BCD sum. Example of 4 -
digit BCD sum. BCD subtraction

considerations. Nines complement arithmetic.

Tens complement arithmetic. Example of
BCD subtraction. Difficulties in decimal
arithmetic. The “Playbdy” effect in decimal
arithmetic.

. Communication with the Physical World.

Definitions of digital and analog input and
output Reading dlgltal data from a switch
register. Detection of change in digital input
data —logical differencing. Example of
simultaneous digital input and output.
Output to a light display. Use as diagnostic
device. Description of the analog to digital
convertér. The multiplexer. The sample and
hold buffer. Controlling the multiplexer.
Conversion time. Converting A/D readings to
engineering units. An A/D reading
subtoutine. Example of physical
measurement — temperature measured with a
thermistor. Arithmetic manipulation of
readings.

Interrupt Drivert Processes —the Real
Time Clock.

Interruptable processes. The nature of an
interrupt. Scheme of task priorities for
allowing interrupts. Preservation of status of

VII

144

152

163

Chapter 17

Chapter 18

f

CONTENTS

the interrupted task. Eveht counting
interrupts. The real time clock. Meaning of
interrupt enablement. Meaning of device
arming. Circumstances under which an
interrupt can occur. The interrupt
instruction. Function of the 88-VI. Save
sequence for 8080 registers and flags. Arming
the clock. A ten second timeout example. A
software time of day clock. Constraints on
copying the clock. Keeping sidereal time.
Stack requirements for various types of
interrupt schemes.

Interrupt Driven Processes —Input and
Output.

Separation of input and output interrupts.
Conditions for an interrupt. Clearing of ready
flag by data transfer. Uncertainty in
arm/disarm state on power up. Example of
monitoring keyboard for special character.
Clearing of VI ready flag. Priority interrupt
systems. OQutput interrupts. An output
interrupt service routine for character
strings. Simultaneous input and output under
interrupt control. Constraints on
simultaneous two way data transfer. Conflict
of interrupts from separate devices.

Debugging Programs

Programming precautions to ease debugging.
Some bad practices. The debug program.
Inspection and modification of memory with
debug. Jumping into a program from debug.
The debug pseudoregisters. Setting the
pseudoregisters. Bit specification of the F
register. Setting register pairs —the stack
pointer—H and L, B and C, D and E. Setting
the interrupt enable/disable flag. Register
and flag display with the R command. Nature
of the return from the breakpoint. Binary
instruction specifications for debug purposes.

178

188

»

.Index

CONTENTS

Stepping through a program by
breakpointing. Example —correcting an
erroneous instruction. Cautions in the use of
breakpointing. Errors caused by the
breakpoint return instructions. Patching in a
missing instruction using a trap instruction.
Review of RST. Economics of debugging.
Some general procedures for estimating
source of error.

Appendices
Source listing of the debug program.

Source listings of the LSI/2 cross assembler
and the ALTAIR object loader, with
assembler manual.

Bit pattern and equivalence table listings for
the Cyrillic alphabet

IX

204

215

292

304

1 / BINARY OPERATIONS

Computer components have the property of being in an on or off
state. Whether we choose to call these two states on and off, one and
zero, yin and yang or set and reset is pretty much irrelevant. The fact
that there are only two states makes itself felt in every dealing with
the computer. The user is forced to think in a system in which there are
only two digits. Conventionally we choose to call these states one and
zero. :

The idea of expressing information by means of a two state code is
not a new one and predates the computer. Situations in which only two
states are allowed to express a message are familiar to the reader.
Consider: “Hang a lantern aloft in the belfry arch of the North Church
tower as a signal light. One if by land and two if by sea . . .” Or how
about “If the shade is up don’t come in. My husband is home”. In both of
these cases the agreed upon signal can only assume two states. Paul
Revere expected either one lantern or two. No lanterns or three lan-
terns was not a legitimate signal. Similarly the shade is to be either up
or down. In between is not a valid signal. Presumably this would leave
the receiver of the shade message in a dither of passionate indecision.
Morse Code is another example in which two states, dot and dash, are
used. In this case more complex information, the alphabet, is built up
from combinations of the two states, e.g., the < - - ~ code of World
War II fame, being the code for the letter V.

The two digits zero,and one can be used in a not dissimilar way to
build up more complex numerical information by using them in a
number system in which they are the only two existing digits, the so-
called binary system.

Like the decimal system with which we are familiar, the binary sys-
tem uses the position of a digit in a string of digits to indicate its value.
In decimal for example the number 329 means nine units plus twice
the base of the number system (ten) plus three times the square of the
system base (10? or 100). The positions of the digits have specific mean-
ings in decimal ag they also do in binary. The values of the places in
decimal are simply the successive powers of the number base, starting
with zero. The number 10° = 1 (any number to the zero power is one).
The first power of the base 10! = 10 the base itself, while the second

1

2 PrAcCTICAL MICROCOMPUTER PROGRAMMING

power 10? = 100, and so forth. In a sjmilar way the place values in
a binary number are the successive powers of two. The first few of
these are:

Powers of Two
2=1
=2
2=4
2=8
2¢=16
25 =32
2¢ =64
27 =128
28 = 256.

The decimal value of a binary number can be found by simply adding
up the values of the columns in which ones are found. The binary num-
ber 110 has a zero in the 2° position, and ones in the 2! and 2® positions.
Its value is therefore 2t + 2! = 4 $-2= 6. Another conversion to decimal
is shown in example 1-1.

Example 1-1

Convert the binary number11010011 to decimal.
First we write out a set of the values of the powers of two,
and then writethe digits of the binary string under the ap-
propriate powers, as: .

14

128 64 32 16 8 4 2 1
1 1 0 10011
Ones appear in the 1, 2, 16, 64 and 128’s columns, so the dec-
imal value of the number is simply the sum of these powers
of two: -

1+2+16+ 64+ 128=211

The powers of two do nbt end with 128 of course but continue indefi-
nitely. Like decimal numbers, binary numbers can be of any length.

BINARY OPERATION 3

More extensive tables of the powers of two are available in most mini
and microcomputer manuals.

It will be noticed that the number in example 1-1 above required
eight binary digits for the expression rather than the three required
for its decimal equivalent. This is not any disability as far as the com-
puter is concerned but is clumsy for the human programmer. Copying
long strings of digits is an error prone process and methods have been
developed for shortening this work. These are the so-called octal and
hexadecimal systems. These systems depend for their ease upon the
fact that converting binary to a number base which is an integral
power of two amounts only to a regrouping of the binary digits or bits.
The process is very simple. To convert the above number to octal we
split it into groups of three bits beginning at the right as:

11 010 011

These groups are then read as if they were independent quantities.
The number above is read 3—-2- 3. In writing such numbers they must
be distinguished from decimal numbers in some way, since confusion
canarise. This is done by adding a subscript which indicates the num-
ber base, in this case 8. The above number would be written: '

323, = 11010011,

A more convenient way to treat binary numbers is in base 16 or hexa-
decimal, sinee the eight bit grouping (word) of the 8080 then divides
evenly into two groups which contain equal numbers of bits. Since 16 is
the fourth power of two, the bits are grouped in fours as:

1101 0011

and the digits read as independent groups. For the rightmost group
above this poses no problem, it is a 3, but the left group, 1 10 1, has no
decimal digit equivalent. Its value is 8+ 4 + 1 =13 but we have no way
of expressing 13 as a single symbol. We therefore assign the first six
letters of the alphabet, A through F, as the symbols for the six possible
combinations of four bits that cannot be expressed as normal digits.
These values are:

4 PrAcCTICAL MICROCOMPUTER PROGRAMMING

Hexadecimal Digit Values
binary decimal symbol
0000 0

0001
0010
0011
0100
0101
- 0110
0111
1000
1001
1010 10
1011 ~ 11
1100 12
1101 13
1110 14
1111 15

While this notation may seem clumsy at first it quickly grows famil-
iar. The above table can be used to convert any binary number to hexa-
decimal or vice versa, as shown in examples1-2.

COWIDNXN b WN=O

TMEODOQED>© OIS W N -

Example 1-2

Convert the binary number 1100110101001011 to hexadeci-
mal. First the number is written in groups of four bits, as:

1100 1101 0100 1011

and the value of each read from the table. The leftmost
group is a twelve, symbol C, the next is a thirteen, symbol D,
the next 4, and the rightmost is an eleven, symbol B. The
hexadecimal value of this binary number is therefore:

CD4B

Arithmetic operations are performed on binary numbers in pretty
much the same way as on decimal numbers. Addition is done by start-
ing at the right and adding the first two digits, with the sum being
written below. If the sum is greater than the capacity of a single digit a

