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Preface

To paraphrase Alfred North Whitehead, the purpose of education is not to fill
a vessel but to kindle a fire. This desirable goal is not always an easy one to
realize with students whose primary interest is in an area other than mathe-
matics. The purpose of this text, then, is to present mathematical skills and
concepts and to apply them to areas that are important to students in the
management, life, and social sciences. The applications included allow stu-
dents to view mathematics in a practical setting relevant to their intended
careers. Almost every chapter of this book includes a section or two devoted to
the applications of mathematical topics. An index of theseapplications on the
inside covers demonstrates the wide variety used in examples and exercises.
Although intended for students who have completed two years, or the equiva-
lent, of high school algebra, this text begins with a brief review of algebra,
which if covered will aid in preparing students for the work ahead.

Important pedagogical features that have been retained in this new edition
are the following:

Intuitive Viewpoint. The book is written from an intuitive viewpoint, with
emphasis on concepts and problem solving rather than on mathematical the-
ory. Each topic is carefully explained, and examples illustrate the techniques
involved. Exercises stress computation and drill, but there are enough chal-
lenging problems to stimulate students.

Flexibility. Atdifferent colleges or universities the coverage and scquenc-
ing of topics may vary according to the purpose of this course. To accommo-
date this, the text has a great deal of flexibility in the order of topics. At the
beginning of each chapter the Chapter Warmup identifies which sections are
prerequisite to the material covered in the chapter. Instructors may find this
useful in creating a syllabus.

Applications. We have found that offering applied topics such as cost, rev-
enue, and profit functions in a separate section brings the preceding mathe-
matical discussions into clear and concise focus. There are 16 such sections in
this book. Beyond this there are 1200 applied exercises and hundreds of ap-
plied examples throughout the text.
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New to this second edition are the following features:

Previous Chapters 1 and 2 have been condensed into one chapter on linear
equations and functions. This material may now be covered more quickly at
the beginning of the course.

Section 3.4 on the simplex method has been rewritten with new explana-
tions to further clarify this difficult concept.

Chapter 6, Mathematics of Finance, has been reorganized and improved.
Applications are used to present the concepts of sequences, series, and sigma
notation in Sections 6.1 through 6.3. Section 6.7 has been added to deal with
the current rules for depreciation of property.

Section 7.8 has been added to discuss Markov chains.

Previous Chapters 10 and 11 have been combined to present limits and
derivatives so that students may move more quickly into differentiation.

Integration is now covered in two chapters. Chapter 12, Indefinite Inte-
grals, includes a new section on differential equations and their applications
to drug absorption rate, carbon-14 dating, and Gompertz curves. Chapter 13,
Definite Integrals, has a new section on improper integrals and their applica-
tions as well as new applications in probability and in finance.

With the increased coverage of calculus, this text may be used in both one-
and two-semester courses.

The number of exercises has been enlarged by nearly 50%. The book now
has 3500 exercises ranging in difficulty from routine to challenging.

Student Solutions Guide. In addition to an answer section at the end of the
text, the solutions to all odd-numbered exercises are included in this supple-
mentary booklet.

Acknowledgments. We would like to thank the many people who have
helped us at various stages of this project. The encouragement, criticism, and
suggestions that have been offered have been invaluable to us. We are espe-
cially indebted to Samuel Laposata, Virginia Electric Power Company, who
provided ideas and encouragement, and to Frank Kocher, The Pennsylvania
State University, who provided support and reviews throughout the first edi-
tion’s evolution. Our special thanks are due William E. Beatty, Rochester
Institute of Technology; James R. Hickey, Baylor University; Roseanne Hof-
mann, Montgomery County Community College; John Hourlland, The Penn-
sylvania State University; Barbara Pettler, The Pennsylvania State Univer-
sity; Rosemary Schmalz, SP, University of Scranton; Albert G. White, St.
Bonaventure University; and Benjamin W. Volker, Bucks County Community
College, who reviewed the entire manuscript or parts of it and made many
helpful comments. Survey respondents offered many valuable suggestions;
our thanks to: Mark Ciancutti, Robert Morris College; Charles R. Diminnie,
St. Bonaventure University; Douglas Lonnstrom, Siena College; Andris
Niedra, Robert Morris College; K. Thanigasalam, The Pennsylvania State
University; and Ramon J. Voltz, Grove City College. We would also like to
express our appreciation to the editorial staff at D. C. Heath for its continued
enthusiasm and support.
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Algebra Concepts

0.1 Sefs

This chapter provides a brief review of the algebraic concepts that will be
used throughout the text. You should already be familiar with its topics, but
it will be to yaur advantage to spend some time reviewing them. You will
also find this chapter useful as a reference as you study related topics in later
chapters.

A setis a well-defined collection of objects. We may talk about a set of books,
a set of dishes, or a set of students. We shall be concerned with sets of
numbers. There are two ways to tell what a given set contains. One way is by
listing the elements (or members) of the set (usually between braces). We
may say that a set A contains 1, 2, 3, and 4 by writing A = {1, 2, 3, 4}. To say
that 4 is a member of set A, we write 4 € A,

If all the members of the set can be listed, the set is said to be a finite set.
A={1,2,3,4} and B = {x, y, z} are examples of finite sets. Although we
cannot list all the elements of an infinite set, we can use three dots to indi-
cate the unlisted members of such a set. For example, N ={1, 2, 3,4, . . . }is
an infinite set. This set N is called the set of natural numbers. Although they
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are not all listed, we know 10 €N, 1121 €N, and 15,331 € N, but is not a
member of N (that is, 3 & N) because % is not a natural number.

Another way to specify the elements of a given set is by description. For
example, we may write D = {x: x is a Ford automobile} to describe the set of
all Ford automobiles. F = {y: y is an odd natural number} is read “F is the set
of all y such that y is an odd natural number.” Thus 3€ F,5€ F,and 7€ F
because they are odd natural numbers, and 6 & F because 6 is not an odd
natural number.

EXAMPLE 1 Write the following sets in two ways:

(a) The set A of natural numbers less than 6.

(b) The set B of natural numbers greater than 10.
c¢) The set C containing only 3.

(c)
Solution  (a) A ={1,2,3,4,5}or A = {x: x is a natural number less than 6}

(b) B={11,12,13,14. . .} or B = {x: x is a natural number greater than 10}

() C={3lorC={x:x=3} n

Note that set C of Example 1 contains one member, 3; set A contains five

members; and set B contains an infinite number of members. It is possible
for a set to contain no members. Such a set is called the empty set or the null
set, and it is denoted by & or by { }. The set of living veterans of the War of
1812 is empty because there are no living veterans of that war. Thus

{x: x is a living veteran of the War of 1812} = (.

Special relations that may exist between two sets are defined as follows.

Relations with Sets
DEFINITION EXAMPLE

1. Sets X and Y are equal if they contain the same L IfX=1{1,2,3, 4} and

elements. Y=4{4,3, 2 1}, then
X=Y.

2. A C B if every element of A is an element of B. 2. IfA={1,2,¢, f}and
A is called a subset of B. The empty set is a B={1,2,3,a,b,¢,f},
subset of every set. then A C B.

3. If C and D have no elements in common, they 3. IfC=1{1,2 a4 b}and
are called disjoint, D={3,¢5, ¢}, C and

D are disjoint.

In the discussion of particular sets, the assumption is always made that
the sets under discussion are all subsets of some larger set, called the
universal set U. The choice of the universal set depends upon the prob-
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Figure 0.1 Figure 0.2 Figure 0.3

EXAMPLE 2

Solution

lem under consideration. For example, in discussing the set of all stu-
dents and the set of all female students, we may use the set of all humans
as the universal set.

We may use Venn diagrams to illustrate the relationships among sets.
We use a rectangle to represent the universal set and closed figures in-
side the rectangle to represent the sets under consideration. Figure 0.1
shows such a Venn diagram.

Figure 0.1 shows that B is a subset of A; that is, B C A. In Figure 0.2, M
and N are disjoint sets. In Figure 0.3, sets X and Y overlap; that is, they
are not disjoint.

The shaded portion of the diagram indicates where the two sets over-
lap. The set containing the members that are common to two sets is said
to be in the intersection of the two sets.

Set The intersection of A and B, written A N B, is
Intersecti
" i ANB={x: x €A and x € B}.

IfA=1{2,3,4,5 and B=1{3,5,7,9, 11}, find A N B.

A N B = {3, 5} because 3 and 5 are in both A and B.
Figure 0.4 shows the sets and their intersection. 8

The union of two sets is the set that contains all members of the two
sets.

Figure 0.4
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EXAMPLE 3

Solution

EXAMPLE 4

Solution

EXAMPLE 5

Solution

Set Union The union of A and B, written A U B, is
AUB = {x: x € A or x € B (or both)}.

If X ={a,b,c,f} and Y = {e, f, a, b}, find X U Y.
XUY={a,b,c,e,f} B

Let A = {x: x is a natural number less than 6} and B ={1, 3, 5,7, 9, 11}.
(a) Find A N B. (b) Find A U B.

(a) ANB={1,3,5}
(b)) AUB=1{1,2,3,4,5,7,9, 11} a

We can illustrate the intersection and union of two sets by the use of
Venn diagrams. The shaded region in Figure 0.5 represents A N B, the
intersection of A and B, while the shaded region in Figure 0.6 represents
A U B.

Figure 0.5 Figure 0.6

All elements of the universal set that are not contained in a set A form a
set called the complement of A.

Set Complement  The complement of A, written A’, is

={x:x€U and =x & A}

IfU={xeN:x<10},A ={1, 3, 6}, and B ={1, 6, 8, 9}, find
(a) A’ (b) B’ (¢) (A NB) (d) A" UB’

(a) U=1{1,2,3,4,5,6,7,8,9ts0A’' ={2,4,5,7,8, 9}
(b) B' =42, 3,4,5, 7}

(c)AﬂB={ 6} so(ANB) =1{2,3,4,5,7,8, 9}

(d A'UB'={2,4,5,7,8,9,} U {2,3,4,5, 7}

2,
={ 4? 537’8,9} .



