A DISCIPLINE
OF PROGRAMMING

EDSGER W. DIJKSTRA




" A DISCIPLINE
OF PROGRAMMING

EDSGER W. DIJKSTRA
Burroughs Research Fellow,

Professor Extraodinarius,
Technological University, Eindhoven

PRENTICE-HALL, INC.

ENGLEWOOD CLIFFS, Nx}-



Library of Congress Cataloging in Publication Data
Dijkstra, Edsger Wybe.
A discipline of programming.

1. Blectronic digital computers—Programming.
L Title. -
QA76.6.D54 001.6°42 75-40478
ISBN 0-13-215871-X

© 1976 by Prentice-Hall, Inc.
Englewood Cliffs, New Jersey

All rights reserved. No part of this book

may be reproduced in any form or by any means
without permission in writing

from the publisher.

10 9 8 7 6 5 4 3 21

_Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore

- 4

\M

i



FOREWORD

In the older intellectual disciplines of poetry, music, art, and science, histo-
rians pay tribute to those outstanding practitiopers, whose achievements have
widened the experience and 'understanding of their admirers, and have
inspired and enhanced the talents of their imitators. Their innovations are
based on superb skill in the practice of their craft, combined with an acute
insight into the underlying principles. In many cases, their influence is en-
hanced by their breadth of culture and the power and lucidity of their expres-
sion.

This book expounds, in its author’s usual cultured style, his radical new
insights into the nature of computer programming. From these insights, he
has developed a new range of programming methods and notational tools,
which are displayed and tested in a host of elegant and efficient examples.
This will surely be recognised as one of the outstanding achievements in the
development of the intellectual discipline of computer programming.

C.A.R. HOARE



PREFACE

For a long time I have wanted to write a book somewhat along the lines of
this one: on the one hand I knew that programs could have a compelling and
deep logical beauty, on the other hand I was forced to admit that most pro-
grams are presented in a way fit for mechanical execution but, even if of any
beauty at all, totally unfit for human appreciation. A second reason for dis-
satisfaction was that algorithms are often published in the form of finished
products, while the majority of the considerations that had played their role
during the design process and should justify the eventual shape of the finished
program were often hardly mentioned. My original idea was to publish a
number of beautiful algorithms in such a way that the reader could appreciate
their beauty, and I envisaged doing so by describing the —real or imagined—
design process that would each time lead to the program concerned. I have
remained true to my original intention in the sense that the long sequence of
chapters, in each of which a new problem is tackled and solved, is still the-
core of this monograph; on the other hand the final book is quite different
from what I had foreseen, for the self-imposed task to present these solutions
in a natural and convincing manner has been responsible for so much more,
that I shall remain grateful forever for having undertaken it.

When starting on a book like this, one is immediately faced with the
question: “Which programming language am I going to use ?”, and this is not
a mere question of presentation! A most important, but also a most elusive,
aspect of any tool is its influence on the habits of those who train themselves
in its use. If the tool is a programming language, this influence is —whether
we like it or not— an influence on our thinking habits. Having analyzed that
influence to the best of my knowledge, I had come to the conclusion that
ng@ne of the existing programming languages, nor a subset of them, would
suit my purpose; on the other hand I knew myself so unready for the design

xiii



Xiv PREFACE

of a new programming language that I had taken a vow not to do so for the
next five years, and I had a most distinct feeling that that period had not
yet elapsed! (Prior to that, among many other things, this monograph had to
be written.) I have tried to resolve this conflict by only designing a mini-
language suitable for my purposes, by making only those commitments
that seemed unavoidable and sufficiently justified.

This hesitation and self-imposed restriction, when' ill-understood, may
make this monograph disappointing for many of its potential readers. It will
certainly leave all those dissatisfied who identify the difficulty of program-
ming with the difficulty of cunning exploitation of the elaborate and baroque
tools known as “higher level programming languages” or —worse!— “pro-
.gramming systems”. thn they feel cheated because I just ignore all those
bells and whistles, I can only answer: “Are you quite sure that all those bells
and whistles, 31l those wonderful facilities of your so-called “powerful” pro-
gramming languages belong to the solution set rather than to the problem-
set”" Ican only hope that, in spite of my usage of a mini-language, they will-
study my text after having done so, they may agree that, even without the
bells and the whistles, so rich a subject remains that it is questionable whether
the majority of the bells and the whistles should have been introduced in the:
first place. And to all readers with a pronounced interest in the design of pro-
gramming languages, I can only express my regret that, as yet, I do not feel
able to be much more explicit on that subject; on the other hand I hope that,
for the time being, this monograph will inspire them and will enable them
to avoid some of the mistakes they might have made without having read it.

During the act of writing —which was a continuous source of surprise
and excitement— a text emerged that was rather different from what I had
originally in mind. I started with the (understandable) intention to present
my program developments with a little bit more formal apparatus than 1 used
to use in my (introductory) lectures, in which semantics used to be introduced
intuitively and correctness demonstrations were the usual mixture of rigorous
arguments, handwaving, and eloquence. In laying the necessary foundations
for such a more formal approach, I had two surprises. The first surprise was
that the so-called “predicate transformers” that I had chosen as my vehicle
provided a means for directly defining a relation between initial and final
state, without any reference to intermediate states as may occur during pro-
gram execution. I was very grateful for that, as it affords a clear separation
between two of the programmer’s major concerns, the mathematical correct-
ness concerns (viz. whether the program defines the proper relation between
initial and final state—and the predicate transformers give us a formal tool
for that investigation without bringing computational processes into the pic-
ture) and the engineering concerns about efficiency (of which it is now clear
that they are only defined in relation to an implementation). It turned out to



PREFACE  xv

be a most helpful discovery that the same program text always admits two
rather complementary interpretations, the interpretation as a code for a
predicate transformer, which seems the more suitable one for us, versus the
interpretation as executable code, an interpretation I prefer to leave to the
machines! The second surprise was that the most natural and systematic
“codes for predicate transformers” that 1 could think of would call for non-
deterministic implementations when regarded as “executable code”. For a
while I shuddered at the thought of introducing nondeterminacy already in
uniprogramming (the complications it has caused in multiprogramming were
only too well known to me!), until I realized that the text interpretation as
code for a predicate transformer has its own, independent right of existence.
(And in retrospect we may observe that many of the problems multiprogram-
ming has posed in the past are nothing else but the consequence of a prior
tendency to attach undue significance to determinacy.) Eventually I came to
regard nondeterminacy as the normal situation, determinacy being reduced
to a —not.even very interesting— special case.

After having laid the fouridations, I started with what I had intended to
do all the time, viz. solve a long sequence- of problems. To do so was an
unexpected pleasure. I experienced that the formal apparatus gave me a much
firmer grip on what I was doing than I was used to; I had the pleasure of
discovering that explicit concerns about termination can be of great heuristic
value—to the extent that I came to regret the strong bias towards partial
correctness that is still so commmon. The greatest pleasure, however, was that
for the majority of the problems that I had solved before, this time I ended
up with a more beautiful solution! This was very encouraging, for I took it
as an indication that the methods developed had, indeed, improved my pro-
gramming ability.

How should this monograph be studied ? The best advice I can give is to
stop reading as soon as a problem has been described and to try to solve it
yourself before reading on. Trying to solve the problem on your own seems
the only way in which you can assess how difficult the problem is; it gives
you the opportunity to compare your own solution with mine; and it may
give you the satisfaction of having discovered yourself a solution that is
superior'to mine. And, by way of a priori reassurance: be not depressed when
you find the text far from easy reading! Those who have studied the manu-
script found it quite often difficult (but equally rewarding!); each time, how-
ever, that we analyzed their difficulties, we came together to the conclusion
that noL the text (i.e. the way of presentatlon), $ut the subject matter itself
was “to blame”. The moral of the story can onlybe that a nontrivial algorithm
is just nontrivial, and that its final description if¥& programming language is
highly compact compared to the considerations that justify its design: the
shortness of the final text should not mislead us! One of my assistants made
the suggestion —which I faithfully transmit, as it could be a valuable one—



xvi PREFACE

that little groups of students should study it together. (Here I must add a
parenthetical remark about the “difficulty” of the text. After having devoted
a considerable number of years of .my scientific life to clarifying the pro-
grammer’s task, with the aim of making it intellectually better manageable,
I found this effort at clarificafion to my amazement (and annoyance) repeat-
edly rewarded by the accusation that “I had made programming difficult”.
But the difficulty has always been there, and only by making it visible can we
hope to become able to design programs with a high confidence level, rather
than “smearing code”, i.e., producing texts with the status of hardly sup-
ported conjectures that wait to be killed by the first counterexample. None
of the programs in this monograph, needless to say, has been tested on a
machine.)

1 owe the reader an explanation why I have kept the mini-language so
small that it does not even contain procedures and recursion. As each next
language extension would have added a few more chapters to the book and,
therefore, would have made it correspondingly more expensive, the absence
of most possible extensions (such as, for instance, multiprogramming) needs
no further justification. Procedures, however, have always occupied such a
central position and recursion has been for computing science so much the
hallmark of academic respectability, that some explanation is due. -

First of all, this monograph has not been written for the novice and, con-
sequently, T expect my readers to be familiar with these concepts. Secondly,
this book is not an introductory text on a specific programming language
and the absence of these constructs and examples of their use should there-
fore not be interpreted as my inability or unwillingness to use them, nor as
a suggestion that anyone else who can use them well should not do so. The
point is that I felt no need for them in order to get my message across, viz.
how a carefully chosen separation of concerns is essential for the design of
in all respects, high-quality programs: the modest tools of the mini-language
gave us already more than enough latitude for nontrivial, yet very satisfactory
designs. ‘

The above explanation, although sufficient, is, however, not the full story.
In any case I felt obliged to present repetition as a construct in its own right,
as such a presentation seemed to me overdue. When programming languages
emerged, the “dynamic” nature of the assignment statement did not seem to
fit too well into the “static” nature of traditional mathematics. For lack of
adequate theory mathematicians did not feel too easy about it, and, because
it is the repetitive construct that creates the need for assignment to variables,
mathematicians did not feel too easy about repetition either. When pro-
gramming languages without assignments and without repetition —such as
pure LISP— were developed, many felt greatly relieved. They were back on
the familiar grounds and saw a glimmer of hope of making programming an
activity with a firm and respectable mathematical basis. (Up to this very day



PREFACE xvii

there is among the more theoretically inclined computing scientists still a
widespread feeling that recursive programs “come more naturally” than repe-
titive ones.)

For the alternative way out, viz. providing the gouple “repetition” and
“assignment to a variable” with a sound and workable mathematical basis,
we had to wait another ten years. The outcome, as is demonstrated in this
monograph, has been that the semantics of a repetitive construct can be
defined in terms of a recurrence relation between predicates, whereas the
semantic definition of general recursion requires a recurrence relation be-
tween predicate transformers. This shows quite clearly why I regard general
recursion as an order of magnitude more complicated than just repetition,
and it therefore hurts me to see the semantics of the repetitive construct

“while B do S”
defined as that of the call
“whiledo(B, S)”
of the recursive procedure (described in ALGOL 60 syntax):

procedure whiledo (condition, statement);
begin if condition then begin statement;

whiledo (condition, statement) end
end

Although correct, it hurts me, for I don’t likz to crack an egg with a
sledgehammer, no matter how effective the sledgehammer is for doing so.
For the generation of theoretical computing scientists that became involved
in the subject during the sixties, the above recursive definition is often not
only “the natural one”, but even “the true one”. In view of the fact that we
cannot even define what a Turing machine is supposed to do without appeal-
ing to the notion of repetition, some redressing of the balance seemed indi-
cated.

For the absence of a bibliography I offer neither explanation nor apology.

Acknowledgements. The following people have had a direct influence on this
book, either by their willingness to discuss its intended contents or by com-
menting on (parts of) the finished manuscript: C. Bron, R.M. Burstall,
W.H.J. Feijen, C.A.R. Hoare, D.E. Knuth, M. Rem, J.C. Reynolds,
D.T. Ross, C.S. Scholten, G. Seegmiiller, N. Wirth and M. Woodger. It is
a privilege to be able to express in print my gratitude for their cooperation.
Furthermore I am greatly indebted to Burroughs Corporation for providing
me with the opportunity and necessary facilities, and thankful to my wife for
her unfailing support and encouragement.

EDSGER W. DIJKSTRA
Nuenen,
The Netherlands



00 N OO 1 d ON - O

CONTENTS

FOREWORD
PREFACE

EXECUTIONAL ABSTRACTION
THE ROLE OF PROGRAMMING LANGUAGES

STATES AND THEIR CHARACTERIZATION

THE CHARACTERIZATION' OF SEMANTICS

THE SEMANTIC CHARACTERIZATION OF A
PROGRAMMING LANGUAGE

TWO THEOREMS

ON THE DESIGN OF PROPERLY TERMINATING
CONSTRUCTS

EUCLID’S ALGORITHM REVISITED

THE FORMAL TREATMENT OF SOME SMALL .
EXAMPLES

10

15

24

37

41

45

51



viii CONTENTS

9
10
LL
12

13

14
15
16
17
18
19
20
21
22

ON NONDETERMINACY BEING BOUNDED

AN ESSAY ON THE NOTION: “THE SCOPE
OF VARIABLES” '

ARRAY VARIABLES
THE LINEAR SEARCH THEOREM

THE PROBLEM OF-THE NEXT PERMUTATION

THE PROBLEM OF THE DUTCH NATIONAL
FLAG

UPDATING A SEQUENTIAL FILE

MERGING PROBLEMS REVISITED

AN EXERCISE AUTTRIBUTED TO
R. W. HAMMING

THE PATTERN MATCHING PROBLEM

WRITING A NUMBER AS THE SUM OF TWO
SQUARES

THE PROBLEM OF THE SMALLEST PRIME
FACTOR OF A LARGE NUMBER

THE PROBLEM OF THE MOST ISOLATED
VILLAGES

THE PROBLEM OF THE SHORTEST
SUBSPANNING TREE

72
79
94

105

107

1i

117

123

129

135

140

143

149

154

o“qn LI

F



-

23
24
25
26
27

REM’S ALGORITHM FOR THE RECORDING
OF EQUIVALENCE CLASSES

THE PROBLEM OF THE CONVEX HULL
IN THREE DIMENSIONS

FINDING THE MAXIMAL STRONG COMPONENTS
IN A DIRECTED GRAPH .

ON MANUALS AND IMPLEMENTATIONS

IN RETROSPECT

161

168

192

201

209



O EXECUTIONAL ABSTRACTION

Executional abstraction is so basic to the whole notion of “an algorithm”
that it is usually taken for granted and left unmentioned. Its purpose is to
map different computations upon each other. Or, to put it in another way, it
‘refers to the way in which we can get a specific computation within our
intellectual grip by considering it as a member of a large class of different
computations; we can then abstract from the mutual differences between the
members of that class and, based on the definition of the class as a whole,
make assertions applicable to each of its members and therefore also to the
specific computation we wanted to consider. :

In order to drive home what we mean by “a computation” let me just
describe a noncomputational mechanism “producing” —intentionally I avoid
the term “computing”— say, the greatest common divisor of 171 and 259. It
consists of two pieces of cardboard, placed on top of each other. The top one
displays the text “GCD(111, 259)="; in order to let the mechanism produce
the answer, we pick up the top one and place it to the left of the bottom one,
on which we can now read the text “37”.

The simplicity of the cardboard mechanism is a great virtue, but it is
overshadowed by two drawbacks, a minor one and a major one. The minor
one is that the mechanism can, indeed, be used for producing the greatest
common divisor of 111 and 259, but for very little else. The major drawback,
however, is that, no matter how carefully we inspect the construction of the
mechanism, our confidence that it produces the correct answer can only be
based on our faith in the manufacturer: he may have made an error, either in
the design of his machine or in the production of our particular copy.

In order to overcome our minor objection we could consider on a huge
piece of cardboard a large rectangular array of the grid points with the

1



2 EXECUTIONAL ABSTRACTION

integer coordinates x and y, satisfying 0 << x << 500 and 0 < y < 500. For
all the points (x, y) with positive coordinates only, i.e. excluding the points
on the axes, we can write down at that position the value of GCD(x, y); we
propose a two-dimensional table with 250,000 entries. From the pdint of view
of usefulness, this is a great improvement: instead of a mechanism able to
supply the greatest common divisor for a single pair of numbers, we now
have a “mechanism” able to supply the greatest common divisor for any
pair of the 250,000 different pairs of numbers. Great, but we should not get
too excited, for what we identified as our second drawback —“Why should
we believe that the mechanism produces the correct answer ?”— has been
multiplied by that same factor of 250,000: we now have to have a tremendous
faith in the manufacturer!

So let us consider a next mechanism. On the same cardboard with the
grid points, the only numbers written on it are the values / through 500
along both axes. Furthermore the following straight lines are drawn:

1. the vertical lines (with the equation x = constant);

2. the horizontal lines (with the equation y = constant);
3. the diagonals (with the equation x 4 y = constant);
4. the “answer line” with the equation x = y.

In order to operate this machine, we have to follow the following instruc-
tions (“play the game with the following rules”). When we wish to find the
greatest common divisor of two values X and ¥, we place a pebble —also
provided by the manufacturer— on the grid point with the coordinates x = X
and y = Y. As long as the pebble is not lying on the “answer line”, we
consider the smallest equilateral rectangular triangle with its right angle
coinciding with the pebble and one sharp angle (either under or to the left of
the pebble) on one of the axes. (Because the pebble is not on the answer line,
this smallest triangle will have only one sharp angle on an axis.) The pebble
is then moved to the grid point coinciding with the other sharp angle of the
triangle. The above move is repeated as long as the pebble has not yet arrived
on the answer line. When it has, the x-coordinate (or the y-coordinate) of the
final pebble position is the desired answer.

What is involved when we wish to convince ourselves that this machine
will produce the correct answer ? If (x, y) is any of the 249,500 points not on
the answer line and (x’, y’) is the point to which the pebble will then be moved
by one step of the game, then either x’ = xand )’ =y —xorx' =x — y
and y’ = y. It is not difficult to prove that GCD(x, y) = GCD(x', y’). The
important point here is that the same argument applies equally well to each
of the 249,500 possible steps! Secondly —and again it is not difficult— we can
prove for any point (x, y) where x = y (i.e. such that (x, y) is one of the 500
points on the answer line) that GCD(x, y) = x. Again the important poin§



* EXECUTIONAL ABSTRACTION 3

is that the same argumentfis applicable to each of the 500 points of the'answer
line. Thirdly —and agair}/]this is not difficult— we have to show that for any
initial position (X, Y)a fihite number of steps will indeed bring the pebble on
the answer line, and again the important observation is that the same argu-
ment is equally well applicable to any of the 250,000 initial positions (X, Y).
Three simple arguments, whose length is independent of the number of grid
points: that, in a nutshell, shows what mathematics can do for us! Denoting
with (x, y) any of the pebble positions during a game started at position
(X,.Y), our first theorem allows us to conclude that during the game the
relation

GCD(x, y) = GCD(X, Y)

will always hold or —as the jargon says— “is kept invariant”. The second
theorem then tells us that we may interpret the x-coordinate of the final
pebble position as the desired answer and the third theorem tells us that the
final position exists (i.e. will be reached in a finite number of steps). And thlS
concludes the analysis of what we could call “our abstract machine”.

Our next duty is to verify that the board as supplied by the manufacturer
is, indeed, a fair model. For this purpose we have to check the numbering
along both axes and we have to check that all the straight lines have been
drawn correctly. This is slightly awkward as we have to investigate a number
of objects proportional to N if N (in our example 500) is the length of the
side of the square, but it is always better than N2, the number of possible
computations.

An alternative machine would not work with a huge cardboard but with
two nine-bit registers, each capable of storing a binary number between 0
and 500. We could then use one register to store the value of the x-coordinate
and the other to store the value of the y-coordinate as they correspond to
“the current pebble position”. A move then corresponds to decreasing the
contents of one register by the contents of the other. We could do the arith-
metic ourselves, but of course it is better if the machine could do that for us.
If we theh want to believe the answer, we should be able to convince ourselves
that the machine compares and subtracts correctly. On a smaller scale the
history repeats itself: we derive once and for all, i.e. for any pair of n-digit
binary numbers, the equations for the binary subtractor and then satisfy
ourselves that the physical machine is a fair model of this binary subtractor.

If it is a parallel subtractor, the number of verifications —proportional
to the number of components and their interactions— is proportional to
n = log, N. In a serial machine the trading of time against equipment is
carried still one step further.

Let me try, at least for my own illumination, to capture the highlights of
our preceding example.



4 EXECUTIONAL ABSTRACTION

Instead of considering the single problem of how to compute the
GCD(111, 259), we have generalized the problem and have regarded this as
a specific instance of the wider class of problems of how to compute the
GCD(X, Y). It is worthwhile to point out that we could have generalized the
problem of computing GCD(/11, 259) in a different way: we could have
regarded the task as a specific instance of a wider class of tasks, such as
the computation of GCD(111, 259), SCM(111, 259), 111 * 259, 111 + 259,
111/259, 111 - 259, 111%°%, the day of the week of the ///th day of the 259th
year B.C., etc. This would have given rise to a “/71-and-259-processor” and
in order to let that produce the originally desired answer, we should have had
to give the request “GCD, please” as its input! We have proposed a “GCD-
computer” instead, that should be given the number pair “111, 259” as its
input if it is to produce the originally desired answer, and that is a quite differ-
ent machine!

In other words, when asked to produce one or more results, it is usual
to generalize the problem and to consider these results as specific instances
of a wider class. But it is no good just to say that everything is a special
‘instance of something more general! If we want to follow such an approach
we have two obligations:

1. We have to be quite specific as to how we generalize, i.e. we have to
choose that wider class carefully and to define it explicitly, because our
argument has to apply to that whole class.

2. We have to choose (“invent” if you wish) a generalization<hat is helpful
to our purpose.

In our example I certainly prefer the “GCD-computer” above the “111-
and-259-processor” and a comparison between the two will give us a hint as
to what characteristics make a generalization “helpful for our purpose”. The
machine that upon request can produce as answer the value of all sorts of
funny functions of 711 and 259 becomes harder to verify as the collection of
functions grows. This is in sharp contrast with our “GCD-computer”.

The GCD-computer would have been equally bad if it had been a table
with 250,000 entries containing the “ready-made” answers. Its unique feature
is that it could be given in the form of a tompact set of “rules of a game”
that, when played according to those rules, will produce the answer.

The tremendous gain is that a single argument applied to these rules
allows us to prove the vital assertions about the outcome of any of the games.
The price to be paid is that in each of the 250,000 specific applications of these
rules, we don’t get our answer “immediately”: each tithe the game has to be
played according to the rules!

The fact that we could give such a compact formulation of the rules of
the game such that a single argument allowed us to draw conclusions about

b



EXECUTIONAL ABSTRACTION 5

any possible game is intimately tied to the systematic arrangement of the
250,000 grid points. We would have been powerless if the cardboard had
shown a shapeless, chaotic cloud of points without a systematic nomencla-
ture! As things are, however, we could divide our pebble into two half-pebbles
and move one half-pebble downward until it lies on the horizontal axis and
the other half-pebble to the left until it lies on the vertical axis. Instead of
coping with one pebble with 250,000 possible positions, we could also deal
with two half-pebbles with only 500 possible positions each, i.e. only 1000
positions in toto! Our wealth of 250,000 possible states has been built up by
the circumstance that any of the 500 positions of the one half-pebble can be
combined with any of the 500 positions of the other half-pebble: the number
of positions of the undivided pebbie equals the product of the number of
positions of the half-pebbles. In the jargon we say that “the total state space
is regarded as the Cartesian product of the state spaces of the variables x
and y”.

The freedom to replace one pebble with a two-dimensional freedom of
position by two half-pebbles with a one-dimensional freedom of position is
exploited in the suggested two-register machine. From a technical point of
view thigs is very attractive; oite onlyfneeds to build registers able to distin-
guish between 500 different cases (“values”) and by just combining two
such registers, the total number of different cases is squared! This multi-
plicative rule enables us to distinguish between a huge number of possible
total states with the aid of a modest number of components with only a
modest-number of possible states each. By adding such components the size
of. the state space grows exponentially but we should bear in mind that we
may only do so provided that the argument justifying our whole contraption
remains veey compact; by the time that the argument grows exponentially
as well, there is no point in designing the machine at all!

Note. A perfect illustration of the above can be found in an invention

which is now more than ten centuries old:, the decimal number system!

This has indeed the fascinating property that the number of digits needed.

only grows proportional to the logarithm of the largest number to be

represented. The binary number system is what you get when you ignore
that each hand has five fingers. (End of note.)

In the above we have dealt with one aspect of muititude, viz. the great
number of pebble positions (= possible states). There is an analogous multi-
plicity, viz. the large number of different games (= computations) that can
be played according to our rules of the game: one game for each initial posi-
tion to be exact. Our rules of the game are very general in the sense that they
are applicable to any initial position. But we have insisted upon a compact
justification for the rules of the game and this implies that the rules of the
game themselves have to be compact. In our example this has been achieved -
by the following device: instead of enumerating “do this, do that” we have



