Springer Books on

Peter P Silvester

The
Unix System
Guidebook

An Introductory Guide
for Serious Users

Springer-Verlag
New York Berlin Heidelberg Tokyo

Peter P Silvester

The Unix’ System
Guidebook

An Introductory Guide for Serious Users

r,

Springer-Verlag
New York Berlin Heidelberg Tokyo

Peter P. Silvester

Department of Electrical Engineering
Mc@Gill University

Montreal, Quebec

Canada H3A 2A7

Series Editor

Henry Ledgard

Human Factors Ltd.

Leverett, Massachusetts 01054
USA.

With 6 Figures.
Unix is a trademark of Bell Laboratories.

Library of Congress Cataloging in Publication Data
Silvester, Peter P.
The Unix system guidebook.

(Springer books on professional computing)

Bibliography: p.

1. UNIX (Computer system) I. Title. I1. Series.
QA76.6.5564 1983 001.64'25 83-16846

©1984 by Springer-Verlag New York Inc.

All rights reserved. No part of this book may be translated or reproduced
in any form without written permission from Springer-Verlag, 175 Fifth
Avenue, New York, New York 10010, U.S.A.

Media conversion by Science Typographers, Inc., Medford, New York.
Printed and bound by R. R. Donnelley & Sons, Harrisonburg, Virginia.
Printed in the United States of America.

9876 54321

ISBN 0-387-90906-0 Springer-Verlag New York Berlin Heidelberg Tokyo
ISBN 3-540-90906-0 Springer-Verlag Berlin Heidelberg New York Tokyo

Preface

Well suited to medium-scale general purpose computing, the Unix time-
sharing operating system is deservedly popular with academic institutions,
research laboratories, and commercial establishments alike. Its user com-
munity, which until recently was made up mostly of experienced computer
professionals, is now attracting many people concerned with computer
applications rather than systems. Such people are mainly interested in
putting Unix software to work effectively, hence need a good knowledge of
its external characteristics but not of its internal structure. The present book
is intended for this new audience, people who have never encountered the
Unix system before but who do have some acquaintance with computing.

While helping the beginning user get started is a primary aim of this
book, it is also intended to serve as a handy reference subsequently.
However, it is not intended to replace the definitive Unix system documen-
tation. The Unix operating system as it now exists at most installations
(popularly, though somewhat inaccurately, called Version 7 Unix) is sub-
stantially as described by the Seventh Edition of the system manuals, This
book emphasizes Version 7 and systems closely related to it, but it does also
describe some other facilities in wide use.

Many people have been instrumental in shaping this book and the author
wishes to express his gratitude to them all. Particular thanks are due to
David Lowther, for our many helpful discussions: and to the many students
whose suggestions enlivened the task,

PETER P. SILVESTER

Contents

Chapter 1. Introduction

A Multimachine Operating System
System Characteristics
Portability

Past and Future
Ancient History
The Modern Age
Through a Glass Darkly
Things to Read
Typographic and Lexical Curios
Using This Book

Chapter 2. Getting Started
Communicating with the System
User Names and Numbers

Logging In and Out

The Terminal

Typing at the Keyboard
Running the System

Commands

Files and File Names

Wild-Card File Names
Writing and Running Programs

Running Fortran Programs

The ed Text Editor

Creating and Modifying Text

Sample Terminal Session

~N NNV B W W RS e

viil

Chapter 3. Files in the Unix System
Logical Structure of Files
Ordinary Disk Files
Special Files
Directories
Directory Hierarchies
File Names and Paths
Changing Directories
File Access Permissions
Working with the File Structure
The System Directory Structure
Keeping Track of Directories
Altering Access Permissions
Moving and Removing Files
File Location and Identification
Removable File Volumes
The mount and umount Commands
Making New File Structures
Restrictions on Removable Volumes
Internal Structure of Files
Logical and Physical Structure
Sequential and Random Access
Input-Output Buffering
Archives and Libraries

Chapter 4. The Command Shell

Issuing Commands
The Shell Prompt
Form of Shell Commands
Standard Files
Multitasking and Waiting
Pipes and Pipelines

The Shell Programming Language
Shell Procedures
Parameter Passing
Conditional Execution

Input Handling by the Shell
Input Buffering
Errors and Error Correction
Characters Given Special Treatment
Argument Echoing
Resetting Terminal Parameters

Contents

23
23
23
24
25
26
28
29
30
32
32
33
35
37
38
40
40
41
42
44
44
45
46
47

48
48
49
49
51
52
53
55
55
57
58
59
60
61
62
63
64

Contents

Chapter 5. The System Kernel

Nature of the Kernel
Functions of the Kernel
Kernel Structure

Machine Primitives and System Cails
System Calls
Errors from System Calls

Process Coordination and Management
Process Initiation
Memory Allocation
Time and Resource Sharing
fork, execl,and wait

Input and Output Operations
Device Independence
First Level Interrupt Handling
Special Files: Block and Character
Physical Structure of Files
System Calls for File Access
Standard File Assignments
File Identification

Chapter 6. Facilities and Utilities
Communications
Mail Services
Sending Mail
Immediate Messages
Two-Way Communication
Avoiding Messages
File Management
Copying and Printing Files
File Sorting
Comparing Files
Filtering Files
Determining File Size
Other General Ultilities
Timed Requests
System Documentation
The ASCII Character Set

Chapter 7. Text Preparation and Processing

Tools and Facilities
Text Editors

X

66
66
67
67
68
69
70
70
70
72
73
74
76
76
76
77
78
80
81
82

83
33
83
85
85
86
87
87
88
89
91
92
93
94
94
96
97

99
99
99

X Contents

Text Processing Programs 100
Using the ed Text Editor 101
The Editing Buffer 101
Line Numbers 102
Editor Commands 103
Pointer Manipulation and Text Examination 105
Inserting, Appending, and Deleting Text 106
String Searching and Replacing 107
Cut and Paste Operations 108
File Handling by the Editor 109
The vi Screen Editor 110
Window Display 111
The Editing Cursor 112
Editor Commands 112
Inserting and Appending Text 113
Text Deletions and Changes 114
Starting and Stopping v1i 115
The nrof f Text Formatter 115
The nroff Command Language 116
Filling and Adjusting 117
Page Layout 118
Defining and Using Macros 119
Traps, Headers, and Page Numbers 120
The =ms Macro Library 122
Other Text Formatting Programs 122
The troff Text Formatter 123
Equation Processing with neqn 123
Table Manipulation with tbt 124
Spelling and Typographic Errors 125
The Dictionary Check 126
Typographical Errors 127
Chapter 8. Languages and Compilers 128
Programming Languages Available 128
Structured Languages 128
Fortran 129

A Veritable Babel 129
Fortran 77 130
The f77 Fortran 77 Compiler 130
Running Fortran Programs 131
Textual Extensions to Fortran 77 132
Extensions to Language Scope 133
Fortran 77 Input and Output 135

Fortran 77 Rule Violations 136

Contents

Ratfor: A Rational Fortran
The ratfor Preprocessor
Program Text Formatting in Ratfor
Statement Groups and i f Statements
Program Loops in Ratfor
Text Insertions and Substitutions
Ambiguity and Duplication
Using ratfor
Reverse Processing with struct
The C Language
General Characteristics of C
Structure of C Programs
Constants, Variables, and Pointers
Arithmetic and Logical Operations
Structures
Input and Output with C
The C Preprocessor
Compiling, Assembling, and Loading
The Ld Loader
The cc and f77 Commands
The Process Option Hierarchy
Program Archives
Berkeley Pascal
Structure of the Pascal System
Interpreted Pascal
Compiled Pascal
Error Flagging
Execution Profiling
Program Tidying
Basic
Expressions, Names and Statements
Running bas
Assembler Language Programming
The as Assembler

Chopter 9. A Selected Command Set
Definitions of Commands
A Selected Command Set

Chapter 10. Bibliography
Books
Articles

Index

Xi

137
137
138
139
140
141
142
143
143
144
144
145
147
149
151
151
152
153
153
154
157
157
158
158
159
160
162
162
163
164
164
165
166
166

167
167
170

196
196
199

203

Chapter 1

Introduction

The Unix time-sharing system is rapidly becoming one of the most popular
computer operating systems ever designed. Its unique popularity may be the
result of portability; Unix systems are available for various different com-
puters, while practically all other operating systems are tied to specific
machines. Whether for this reason or any other, the Unix system is
becoming universal, much as Fortran became the universal language in its
day. And just as Fortran influenced the style of other programming lan-
guages, so Unix software characteristics are becoming visible—both by
emulation and deliberate avoidance—in other operating systems. For com-
puter users, some acquaintance with the Unix system is therefore taking on
increasing importance.

A Multimachine Operating System

Although it was originally intended for the PDP-11 family of computers,
Unix software has been recreated for use on many other machines, both
smaller and larger. There now exist versions of the Unix system, or other
operating systems which very closely resemble it, for many widely used
small computers based on 16-bit microprocessor chips. Upmarket from the
PDP-11, Unix systems (in some cases several) exist for the Interdata 8/32,
the PERQ, the VAX-11 family, and other large minicomputers. Other
versions run on large mainframe computers like the Amdahl. At the
opposite end of the computer spectrum, Unix-like operating systems are
available for several eight-bit microprocessors.

System Characteristics

Three main reasons are usually cited for the current popularity of Unix and
Unix-like operating systems with users. First, they provide a simple and

2 Chapter | Introduction

logically almost consistent command language through which the user can
interact with the system; a language easy to learn. fairly easy to understand,
and not very easy to forget. Second, Unix systems provide a very wide
variety of software tools and services, so that program development can
progress rapidly. Third. and perhaps most important. both system services
and user programs are insured against too rapid obsolescence, by being
nearly machine-independent. Programs can be moved to new computers
along with the operating system, while new system services become available
on practically all versions of the Unix system at once.

Traditionally, many computer manufacturers have regarded operating
system software as an unpleasant hurdle to be overcome before a new
machine could be marketed. The relative portability of the Unix system has
endeared it to hardware makers. for computers can be designed to run
under this operating system by investing only a modest amount of software
effort. New hardware can be made ready for the market not only quickly,
but with all the sureness of an already accepted product. To the user, a
knowledge of Unix software structure and command language is of long-term
value, for it is very likely that his next computer will employ a variant of the
same system or one of its close cousins. Relative machine-independence also
enriches the range of general utility programs available; because programs
can migrate to new computers along with the operating system. develop-
ment of new general-purpose programs becomes attractive.

Not surprisingly, the Unix operating system is not quite perfect. Its
major shortcomings include, first of all, that it assumes a friendly user
community. The file security provided, for example. is not nearly good
enough to make it attractive in such sensitive applications as banking or
finance. Secondly, many of its command structures and conventions bear
the marks of having been developed by a circle of friends, without much
regard for subsequent distribution to others. For instance, many commands
are abbreviated to very short forms and appear easy to confuse with others.
Finally, protection against operator error is imperfect; certain users can
even accidentally destroy all files on the system, including the operating
system itself. This latter disadvantage can be very serious, especially in
commercial or financial applications. But fortunately it only matters to very
experienced users. who have gradually acquired a knowledge of pretty well
everything the system can do. Novices are very unlikely to have access to
quite so much destructive power.

Portability

Because Unix programs are almost entirely written in a high-level program-
ming language called C, this system is practically guaranteed to become
available on many future computers as well as quite a few more already
existing ones. To install a Unix system on yet another computer. two main

Past and Future

things are necessary: a C compiler and a modest amount of machine-depen-
dent coding. A compiler for the C language is always required. so that the
Unix operating system itself can be translated to the native language of the
new machine. Construction of such a compiler generally takes a few
man-months or perhaps a man-year of programming effort. In addition to
the compiler, transporting Unix to another machine requires a few
machine-dependent input-output hardware service routines. These must
necessarily be written in the native language of the new machine, so that
they are strictly locked to that computer. Fortunately. they are usually quite
short, so that much programming effort is not needed. Usually, a matter of
man-weeks or, at worst, man-months, is involved. These amounts of time
are tiny when compared to the investment required to design and write a
new operating system. The initial effort that produced the Unix kernel
amounted to two or three man-years, but the addition of the many utility
programs that make Unix systems useful has taken much, much more.

The great majority of Unix system services available—editors, compilers,
file sorting and merging programs, and others—are written in high-level
languages, with C the most widely used language by far, New utility
programs constructed by the now quite wide Unix user community are also
written in high-level languages. C being again the most frequent choice. As a
result, the new programs can be incorporated in almost any Unix installa-
tion without alteration.

Past and Future

Although it has gained wide popularity only recently, the Unix system is
mature software which has undergone years of testing and rewriting. To
assess its probable future, its history may deserve at least brief mention.

Ancient History

The first Unix system was written by D. M. Ritchie and K. Thompson at
Bell Laboratories, around 1969 or 1970, to run on the now all-but-forgotten
PDP-7 and PDP-9 computers. Their primary objective was to produce a
system convenient for inexperienced users, and they succeeded at least well
enough to be encouraged to construct a second version to run on a
PDP-11,/20. Because the PDP-11 family of computers became enormously
popular in the decade of the seventies, a third version, again fully rewritten,
appeared in due course; it supported the PDP-11 /34, /40, /45, /60, and
/70. By 1973, the system authors had abandoned assembler language
coding, for it was becoming evident that transportability from machine to

4 Chapter 1 Introduction

machine would be greatest if a very large part (ideally but impossibly, all) of
the system were written in a high-level language. A language called C was
developed for the purpose. C is well suited to writing operating systems
while retaining most other characteristics of good high-level languages, and
it remains the principal language of the Unix operating system. C resembles
Pascal in many respects, but it does allow programming a little closer to the
machine register level—as if Pascal were to recognize the existence of
registers and bits! The structure and capabilities of C thus allowed building
the Unix system in a fashion which made it largely independent of the
machine hardware structure: at least transportable, if not actually portable.

A paper on the Unix operating system was published by Ritchie and
Thompson in 1974 in the Communications of the Association for Computing
Machinery. This paper quickly became a defining landmark for the system.
It outlined the basic system structure and methods of work; although these
have been refined considerably since that time, the basic notions have
remained almost unchanged. What has changed, to be sure, is the range of
system services and utilities available. Unix probably contains a better
selection of software tools than any other operating system. Not only is
their range wide, but they have for the most part been written to go together
well.

The Unix system is currently available on all computers in the PDP-11
family, including the PDP-11,/23, /24, /44, and other recent additions. It
represents a fourth broad rewriting of the system, although it is popularly
(though not quite correctly) called Version 7. The number 7 in fact refers to
the seventh edition of the Unix Programmer’s Manual, the document which
describes the operation of the current system version. Very few people,
incidentally, possess a complete copy of that document—not because it is
secret, but because it is about the size and shape of the Manhattan
telephone directory!

A significant influence on the course of Unix software development came
in the late 1970s, when a major development project at the University of
California, Berkeley, began to bear fruit. The Berkeley Unix system adhered
closely to the spirit and objectives of its Bell Laboratories cousin, but it
introduced substantial extensions and improvements. Many of the improve-
ments were internal, invisible to the casual user. Others, like the Berkeley vi
text editor, are immediately visible.

The Modern Age

Unix systems for computers other than the PDP-11 started appearing in the
late seventies. A version for the Interdata 8 /32 computer became available
around 1978, and one for the VAX-11,/780 came soon thereafter. Several
versions for other processors, notably the model 68000 and Z8000 16-bit
microprocessor chips and thus for the many computers built around them,

Past and Future 5

followed. Between 1978 and 1982, other operating systems also appeared.
developed independently but with a remarkable similarity to Version 7 (aqd
its predecessor Version 6) Unix systems. Some resemble Version 7 only in
what the system looks like to the user at the terminal. In others, the
similarity extends to such internal details as file formats, so that not only
programs but even disk or tape files can be moved between systems. Most of
the look-alikes are intended for computers that employ 8-bit or 16-bit
microprocessor chips, but at least one is available on the commercial market
for the PDP-11 series of machines.

Until 1980-1981, the creation and marketing of look-alike Unix systems
was lent strong encouragement by the fact that the Bell Laboratories Unix
system itself was, for all practical purposes, available for academic research
and teaching use only. Look-alike systems therefore appeared to fill the
commercial gap. For example, the Idris and Unix systems are independent
but look similar to the user, and they are compatible with each other. Since
about 1981, Unix has been made available commercially through retail
vendors, under various names such as Xenix, Unisis. or Unity. These are not
look-alikes, but Unix itself dressed in a commercial suit. They are not only
entirely compatible with Unix systems; they are Unix systems. Most such
derivative systems are enhanced, modified, or adapted to perform well in
particular environments.

Both the independently developed systems and the licenced variants of
Version 7 appear on the market under names other than Unix. Different
names are used for both commercial and legal reasons, among which
trademark protection probably ranks high. With Unix systems coming
into widespread use and commercially available almost everywhere short
of drugstore counters, Bell Laboratories are presumably concerned lest
their trademark pass into the public domain through excessively great
success—along with aspirin, bakelite, and many others. At present, there is
no generic name to cover Unix, Xenix, Coherent, Zeus, Cromix, Flex,
Qunix, ... and much of the computer press refers to them all as “ Unix-like
operating systems.”

Through a Glass Darkly

Will the Unix operating system prove sufficiently long-lived and sufficiently
universal to merit study and practice? No one can tell for sure, but the
answer is more likely yes than no. This system is no longer new; it has been
seasoned by more than a decade of development, through several stages,
and has settled down. The prospect for its commercial success is excellent,
and the future of Unix systems in the 1980s may easily resemble that of the
Fortran language in the sixties. Both were initially developed with particular
computer systems in mind, but they quickly outgrew their original hosts.
Both suffer from structural and logical deficiencies which seemed minor or

6 Chapter 1 Introduction

unimportant at the outset but became irksome after the first decade. Both
seem better suited to their tasks (warts and all) than any currently available
competitor. Both may therefore live on long after better languages and more
portable systems became available. Like the English language. with its
constrictive syntax, difficult grammar, incomprehensible spelling, ... and two
or three billion people who continue to use it simply because they all
understand it.

Things to Read

Until recently, very little has been available by way of a simple introduction
to the Unix operating system. Most beginners have been expected to cut
their teeth on photocopies of the admittedly excellent brief articles that
survey the system characteristics—and by perusal of the Unix Programmer’s
Manual, which in its seventh (current) edition is a large volume some ten
centimeters thick. Indeed it is the definitive work. but hardly easy for the
beginner.

With the growing popularity of Unix systems, textbooks and articles of a
tutorial nature have begun to appear. These tend to be a good deal more
readable than the full manual and should constitute the major reference
point for the beginner. A brief bibliography listing most of these, annotated
to give some idea of their contents, appears at the end of this book.

The Unix Programmer’s Manual is the defining document of the system
and is furnished both as paper copy and in machine-readable form. Provi-
sion is made in Unix systems for keeping much of the user documentation
available as disk files, so that users can read particular portions of the
manual without having access to a printed copy, or without even needing
one. Keeping the system manuals in computer-readable form and therefore
easy to modify is vital for most Unix installations, for there are probably no
two installations exactly alike. While every system manager strives to keep
documentation current for his system, in many places no up-to-date paper
manual exists; the disk-file version is the only true version.

Typographic and Lexical Curios

The words used in Unix system commands, the way words are abbreviated,
and occasionally the ways they are spelled are a bit idiosyncratic. Presuma-
bly this is the result of having been developed initially within a circle of
friends prepared to put up with each other’s foibles. Some users take to the
strange habits of Unix like a duck takes to water: others show enthusiasm
more appropriate to a cat. There is no choice; Unix commands come the
way they come.

Past and Future

Lowercase letters are used almost exclusively in Unix system commands.
programming languages, and naming conventions. Although they are rare.
exceptions do exist; it is not simply a matter of using lower case instead of
upper. Both are used, but for some reason capital letters occur much less
frequently than they do in English. A particularly irksome idiosyncrasy to
some is the failure to accept initial capitals even where the conventions of
English demand it. The author, for example. will probably never grow quite
accustomed to identifying himself as silvester, without a capital S.

The almost, but not quite, total use of lower case causes certain problems
when documentation is written in natural languages. For example. the Unix
text editor program is called ed, and the phototypesetier program has the
name troff. (Not unreasonably. some users would have preferred
mnemonically more useful names, e.g., Editor and Phototype.) They are
never called Ed and Troff, because the system regards the letters E and e
as simply two different, unrelated, characters. But what should one do when
a sentence begins “troff is a program for ...”? In this book, the Unix
program naming convention is followed strictly: program names exist in
lower case only, they do not acquire capitals even if they occur at the
beginnings of sentences. But much Unix system literature, occasionally even
including the definitive manual, is somewhat inconsistent about usage in this
matter.

Word usage in the Unix system shows up a lot of curious details rooted
in history, but it is often difficult for the newcomer to master. For example,
the verb “print” is used almost everywhere in the manuals to imply that
output is to be sent to the user terminal. That verb may have been accurate
al some past time, but today few users employ printing terminals; display
screens are much more common. (The verb “print™ to most computer users
implies use of a line printer, not the user terminal.) As another example, the
verbs “move” and “remove”, when referring to files, are employed to mean
“rename” and “delete”. The reference here is to the software methodology
employed: deletion is achieved by removing a linking pointer.

Using This Book

The best way of learning to use an operating system is to use it. To allow the
beginner to learn in this natural way. the first (short) part of this book
contains an introduction to the system and its use. in quite brief and very
simple form. It is sufficiently concise to be usable while sitting at the
terminal, trying out the commands. The main part of this book is longer. It
is intended for reading away from the terminal. and for reference; it
therefore consists of a few explanatory chapters. followed by a summary
description of the more important system commands.

Chapter 2

Getting Started

The Unix operating system is generally considered easy to learn and easy to
use. But even the easiest operating system takes a little getting used to,
especially at the very start when nothing looks even remotely familiar and
every response from the system appears vaguely ominous—if indeed the
system responds at all! Most computer users dislike the first hour or so
spent with a new operating system, when the initial difficulties of a new
command language, new name conventions, and new protocol rules all
appear together. This chapter is intended to provide a launching pad for the
novice user and to help him overcome the problems of that first hour. It is
brief enough to be read at the terminal, trying out the various commands on
the spot or it can be read at another time and place, in preparation for that
first hour.

Communicating with the System

Several users can be logged in to the same computer at the same time under
the Unix timesharing multi-user operating system. Learning to use the Unix
system therefore begins with becoming an authorized system user, then
acquiring familiarity with the procedures for using a terminal.

User Names and Numbers
To keep track of users and their needs, every Unix system has a human

system manager. In large computing centers, the system manager may well
consist of a whole office establishment with receptionists and secretaries to

