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PREFACE

Microcomputer-based real-time systems are used not only by electrical ana
computer engineers but also by engineers in many other disciplines. Mechani-
cal engineers, for example, design robots and other automated machinery
controlled by microcomputers. Plants designed by chemical engineers and
mineral processing engineers are controlled and monitored by microcomputers.
Civil engineers gather hydrological and other environmental data using mi-
crocomputer-based data-acquisition systems. Scientists in both the physical and
biological ‘sciences are also using microcomputer-based real-time systems to
gather and record data from experiments and. to control experimental ap-
. paratus.

USERS OF THIS BOOK

This book was primarily developed for engineering students in a broad range of
disciplines. Practicing engineers and scientists working in the physical, biologi-.
cal, and applied sciences who are seeking a self-contained introduction to the
design of real-time microcomputer systems should also find this book useful.

Even though this book is not aimed specifically at electrical engineering
students, we believe that jt has a place in the electrical engineering curriculum.
Used either as a supplement or as the primary text, it provides a high-level
perspective on the design process. References after every chapter are provided
for readers who may want to pursue a topic in greater depth. .

APPROACH

The objective of the book is to present a systems design methodology that
involves all the components of a real-time computing system, including sensors,
actuators, conditioning electronics, and interfaces as well as the CPU. To

xxi



xxii PREFACE

reflect a common practice in industry and to a great extent in scientific
research, we have chosen to concentrate on the development of board-based
real-time microcomputer systems.

We also emphasize the use of high-level programming languages to produce
software for real-time systems. It is our experience that high-level program-
ming languages can be used effectively in all but the most time-critical
real-time systems. When assembly-language programming is required, it can
often be reduced to a few short subroutines called by the high-level-language
program.

Because of our emphasis on board-level hardware design and the use of
high-level programming languages, and because of the nature of the audience
that we are writing for, this book differs in content and approach from the
standard textbooks on microcomputers used by electrical engineering students.
Our approach is mostly top-down, starting with a look at the design process for
the real-time system as a whole and then discussing the design of the various
components of the system.

We do not discuss the design of microcomputer systems at the chip level in
any detail. Our discussion of assembly-language programming is brief and
oriented toward how to incorporate short assembly-language modules into a
program written in a high-level language and write the necessary assembly-
language components of an interrupt handler. However, we include material
on important topics such as microcomputer-development systems, real-time
operating systems, and transducers and actuators, which are usually not
covered in the standard introductory textbooks on microcomputers.

ORGANIZATION

We use this book as a text for an introductory course on microcomputers. Our
students are in the senior year of an engineering discipline other than electrical
engineering. The majority are mechanical engineering students, but we also
have bioresource, chemical, civil, engineering physics, geological, metallurgi-
cal, mining and mineral process engineering students. All students have had at
least one high-level language programming course (either FORTRAN or
Pascal) and an introductory electrical circuits course. Many of the students
have also had an introductory electronics course which includes some exposure
to digital logic. The material on number systems and digital logic elements in
the first two appendixes is assigned to the students for self-study at the
beginning of the course to ensure that they all have the required background
information.

While we are covering high-level design and software design in lectures, our
students are programming C language applications (using an auxiliary C
language text) in the laboratory. We then cover assembly language and finally
the hardware topics, calling this a top-down software-before hardware organiz-
ation.
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Qur course is heavily laboratory-oriented, which is important for any
_Ctourse based on this text, since the general concepts introduced must be
reinforced by practical experience with a real microcomputer system. Our
microcomputer laboratory consists of a multiuser microcomputer development
system (Tektronix 8560), which is linked to Motorola MC6800-based laboratory
~ microcomputers. Each laboratory microcomputer is equipped with a standard
backplane bus (STD bus) which contains boards that interface the computer to
the apparatus which it monitors and controls. The use of a board-based
microcomputer system in the laboratory reinforces the board-based hardware
design approach of the text.

Our students develop programs for the laboratory computers on the
microcomputer development system. The majority of the programs are written
entirely in a high-level programming language (the language C).

_ The laboratory sequence starts with some programming exercises to intro-
duce the student to the UNIX operating system used on the development
system and to programming in C. Then the students develop a program which
makes use of pumps,.liquid-level sensors, and agitators in the laboratory
apparatus to emulate a washing machine. This procedure introduces students
to the use of microcomputers in simple sequential control (i.e., programmable
controller applications) and shows them very early in the course how a
computer can control physical systems. The next sequence of laboratory
exercises involves the measurement and control of water temperature, which
introduces students to analog interfaces, sensor linearizing, and control via
computer. Students then develop a program for a real-time clock. This exercise
involves the use of interrupts and the development of a short assembly-
language interrupt service routine linked with the main C program. The last
laboratory in the sequence varies, depending on the time available and the
interests of the instructors and students, but it has included the control of a
small robot arm.

OTHER COURSE ORGANIZATIONS

A second approach is to have a bottom-up software-before-hardware or-
ganization in which assembly language would be covered first. A suggested
chapter order for this approach is: introduction (1), computer structure (2),
asseinbly language (7), high-level languages (5), high-level software example
(6), high-level design (3, 4), hardware topics (8 to 14). In the laboratory, the
students could do assembly language first, high-level language next, and then
programs interacting with interfaces, sensors, actuators, etc.

A third approach is to have a bottom-up hardware-before-software order.
In that case the chapters could be ordered as hardware (2, 8, 9, 10 to’ 13),
assembly language (7), high-level language (5, 6), high-level design (3,4),
system-design example (14), development systems (15), and operating systems
(16). With this approach it is more difficult to have laboratories early in the
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course (since software is required to interact with the hardware and the
software is not covered until later in the sequence). It might be used when
there are no laboratories in the first semester of a two-semester sequence.

Although our laboratory is centered on a commercial microcomputer de-
velopment system, many other arrangements are possible. A mainframe
computer or minicomputer could be used to develop the software for the
laboratory computers. Both Tektronix and Hewlett-Packard, for example,
support Pascal and C language cross-compilers and assemblers for many
microprocessors. This cross-software runs on the multiuser DEC VAX
computers and the HP-9000 series computers. Alternatively, a completely
decentralized system could be designed using personal computers such as an
IBM PC. The personal computer can be used as a software-development station,
and for downloading software to a laboratory experiment station containing a
bus-based system; or the personal computer can be enhanced with interface
boards itself and be used as the real-time system. The essential requirements are
that the development system support software development in a high-level
language and that the microcomputer be readily interfaced to transducers and
dctuators in the lab apparatus.

The book by David Auslander and Pau} Sagues entitled Microprocessors for
Measurement and Control (Osborne—McGraw-Hill, 1981) also contains many
laboratory exercises well suited for a course based on our book.
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