REAL-TIME
MICROCOMPUTER
SYSTEM DESIGN

An Introduction

Peter D. Lawrence
Konrad Mauch

REAL-TIME
MICROCOMPUTER
SYSTEM DESIGN

An Introduction

Peter D. Lawrence
Konrad Mauch
Department of Electrical Engineering

University of British Columbia
Canada

k Company

New York St. Louis San Francisco Auckland Bogotdi Hamburg
Johannesburg London Madrid Mexico Milan Montreal New Delhi
Panama - Paris gée&ulo Singapore Sydney Tokyo Toronto

This book was set in Times Roman.

The editor was Sanjeev Rao;

the cover was designed by Rafael Hernandez;

the production supervisor was Phil Galea.

Project Supervision was done by The Total Book.

R.R. Donnelley & Sons Company was printer and binder.

REAL-TIME MICROCOMPUTER SYSTEM DESIGN
An Introduction

Copyright © 1987 by McGraw-Hill, Inc. All rights reserved. i’rinted in the United
States of America. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a data base or retrieval system, without the prior written
permission of the publisher.

1234567890 DOCDOC 8943210987

ISBN 0-07-03L731-0

Library of Congress Cataloging-in-Publication Data

Lawrence, Peter D. (Peter Donald)
Real-time microcomputer system design.

(McGraw-Hill series in electricai engineering)
Includes bibliographies and index.
1. Automatic control. 2. Microcomputers.
3. Real-time data processing. 4. System design.
I. Mauch, Konrad. 1I. Title. IIL. Series.
TJ223.M53L39 1987 629.8'95 86-15361
ISBN 0-07-036731-0
ISBN 0-07-036732-9 (solutions manual)

s

PREFACE

Microcomputer-based real-time systems are used not only by electrical ana
computer engineers but also by engineers in many other disciplines. Mechani-
cal engineers, for example, design robots and other automated machinery
controlled by microcomputers. Plants designed by chemical engineers and
mineral processing engineers are controlled and monitored by microcomputers.
Civil engineers gather hydrological and other environmental data using mi-
crocomputer-based data-acquisition systems. Scientists in both the physical and
biological ‘sciences are also using microcomputer-based real-time systems to
gather and record data from experiments and. to control experimental ap-
. paratus.

USERS OF THIS BOOK

This book was primarily developed for engineering students in a broad range of
disciplines. Practicing engineers and scientists working in the physical, biologi-.
cal, and applied sciences who are seeking a self-contained introduction to the
design of real-time microcomputer systems should also find this book useful.

Even though this book is not aimed specifically at electrical engineering
students, we believe that jt has a place in the electrical engineering curriculum.
Used either as a supplement or as the primary text, it provides a high-level
perspective on the design process. References after every chapter are provided
for readers who may want to pursue a topic in greater depth. .

APPROACH

The objective of the book is to present a systems design methodology that
involves all the components of a real-time computing system, including sensors,
actuators, conditioning electronics, and interfaces as well as the CPU. To

xxi

xxii PREFACE

reflect a common practice in industry and to a great extent in scientific
research, we have chosen to concentrate on the development of board-based
real-time microcomputer systems.

We also emphasize the use of high-level programming languages to produce
software for real-time systems. It is our experience that high-level program-
ming languages can be used effectively in all but the most time-critical
real-time systems. When assembly-language programming is required, it can
often be reduced to a few short subroutines called by the high-level-language
program.

Because of our emphasis on board-level hardware design and the use of
high-level programming languages, and because of the nature of the audience
that we are writing for, this book differs in content and approach from the
standard textbooks on microcomputers used by electrical engineering students.
Our approach is mostly top-down, starting with a look at the design process for
the real-time system as a whole and then discussing the design of the various
components of the system.

We do not discuss the design of microcomputer systems at the chip level in
any detail. Our discussion of assembly-language programming is brief and
oriented toward how to incorporate short assembly-language modules into a
program written in a high-level language and write the necessary assembly-
language components of an interrupt handler. However, we include material
on important topics such as microcomputer-development systems, real-time
operating systems, and transducers and actuators, which are usually not
covered in the standard introductory textbooks on microcomputers.

ORGANIZATION

We use this book as a text for an introductory course on microcomputers. Our
students are in the senior year of an engineering discipline other than electrical
engineering. The majority are mechanical engineering students, but we also
have bioresource, chemical, civil, engineering physics, geological, metallurgi-
cal, mining and mineral process engineering students. All students have had at
least one high-level language programming course (either FORTRAN or
Pascal) and an introductory electrical circuits course. Many of the students
have also had an introductory electronics course which includes some exposure
to digital logic. The material on number systems and digital logic elements in
the first two appendixes is assigned to the students for self-study at the
beginning of the course to ensure that they all have the required background
information.

While we are covering high-level design and software design in lectures, our
students are programming C language applications (using an auxiliary C
language text) in the laboratory. We then cover assembly language and finally
the hardware topics, calling this a top-down software-before hardware organiz-
ation.

PREFACE xxiii

Qur course is heavily laboratory-oriented, which is important for any
_Ctourse based on this text, since the general concepts introduced must be
reinforced by practical experience with a real microcomputer system. Our
microcomputer laboratory consists of a multiuser microcomputer development
system (Tektronix 8560), which is linked to Motorola MC6800-based laboratory
~ microcomputers. Each laboratory microcomputer is equipped with a standard
backplane bus (STD bus) which contains boards that interface the computer to
the apparatus which it monitors and controls. The use of a board-based
microcomputer system in the laboratory reinforces the board-based hardware
design approach of the text.

Our students develop programs for the laboratory computers on the
microcomputer development system. The majority of the programs are written
entirely in a high-level programming language (the language C).

_ The laboratory sequence starts with some programming exercises to intro-
duce the student to the UNIX operating system used on the development
system and to programming in C. Then the students develop a program which
makes use of pumps,.liquid-level sensors, and agitators in the laboratory
apparatus to emulate a washing machine. This procedure introduces students
to the use of microcomputers in simple sequential control (i.e., programmable
controller applications) and shows them very early in the course how a
computer can control physical systems. The next sequence of laboratory
exercises involves the measurement and control of water temperature, which
introduces students to analog interfaces, sensor linearizing, and control via
computer. Students then develop a program for a real-time clock. This exercise
involves the use of interrupts and the development of a short assembly-
language interrupt service routine linked with the main C program. The last
laboratory in the sequence varies, depending on the time available and the
interests of the instructors and students, but it has included the control of a
small robot arm.

OTHER COURSE ORGANIZATIONS

A second approach is to have a bottom-up software-before-hardware or-
ganization in which assembly language would be covered first. A suggested
chapter order for this approach is: introduction (1), computer structure (2),
asseinbly language (7), high-level languages (5), high-level software example
(6), high-level design (3, 4), hardware topics (8 to 14). In the laboratory, the
students could do assembly language first, high-level language next, and then
programs interacting with interfaces, sensors, actuators, etc.

A third approach is to have a bottom-up hardware-before-software order.
In that case the chapters could be ordered as hardware (2, 8, 9, 10 to’ 13),
assembly language (7), high-level language (5, 6), high-level design (3,4),
system-design example (14), development systems (15), and operating systems
(16). With this approach it is more difficult to have laboratories early in the

xxiv PREFACE

course (since software is required to interact with the hardware and the
software is not covered until later in the sequence). It might be used when
there are no laboratories in the first semester of a two-semester sequence.

Although our laboratory is centered on a commercial microcomputer de-
velopment system, many other arrangements are possible. A mainframe
computer or minicomputer could be used to develop the software for the
laboratory computers. Both Tektronix and Hewlett-Packard, for example,
support Pascal and C language cross-compilers and assemblers for many
microprocessors. This cross-software runs on the multiuser DEC VAX
computers and the HP-9000 series computers. Alternatively, a completely
decentralized system could be designed using personal computers such as an
IBM PC. The personal computer can be used as a software-development station,
and for downloading software to a laboratory experiment station containing a
bus-based system; or the personal computer can be enhanced with interface
boards itself and be used as the real-time system. The essential requirements are
that the development system support software development in a high-level
language and that the microcomputer be readily interfaced to transducers and
dctuators in the lab apparatus.

The book by David Auslander and Pau} Sagues entitled Microprocessors for
Measurement and Control (Osborne—McGraw-Hill, 1981) also contains many
laboratory exercises well suited for a course based on our book.

-ACKNOWLEDGMENTS

We would like to thank the many engineering students who used drafts of this
book over the past three years and who gave us valuable criticism, found errors,
and carried us along with their interest in the technology. Jim Dukarm of RSl
Robotic Systems International contributed very useful comments during the
drafting of the book. There were many helpful discussions with Eric Jackson of
International Submarine Engineering.

To Réal Frenette who worked out the solutions to the exercises at the end of
each chapter, we would like to express our gratitude.

We are also indebted to the reviewers of this book whose many constructive
suggestions we have attempted to incorporate into the text.

Finally, we would like to thank our families and friends for their constant
encouragement and support.

Peter D. Lawrence
Konrad Mauch

CONTENTS

Preface xxi
Part 1 Preliminaries

1 Real-Time Computer Systems 3
1.1 What Is a Redl-Time System? 3
1.1.1 Analog Systems 4
1.1.2 Dedicated Digijtal Systems 5
1.1.3 Computer-Based Systems 7
1.2 An ASM Description of a Real-Time System 8
1.3 Components of a Real-Time System 12
1.3.1 Senso: Characteristics 13

1.3.2 Signal Conditioning 15 -
1.3.3 Computer Input 17
1.3.4 The Processor 20
1.3.5 Computer Output 21
1.3.6 Output Conditioning and Power Control 2
1.3.7 Actuators 23
1.4 Example of a Real-Time Computer System 23
Summary ') 25
Exercises 26
Bibliography 28
2 Computer Structure and Function 29
2.1 The Basic Elements of a Computer 29
2.2 The Memory 30
2.2.1 Instructions in Memory 31
34

2.2.2 Data in Memory

X CONTENTS

2.3 The CPU 36
2.3.1 Arithmetic and Logical Unit (ALU) 37

2.3.2 Registers 37

2.3.3 Internal Prqcessor Bus - 40

N 2.3.4 Controller 40
2.4 Buses 45
2.5 Computer Input and Output 45
" Summary 46
Exercises 47
Bibliography 48

3 Prelude to the Design Process 50
3.1 The System Components 50
3.2 The Design Specification 53
3.2.1 Functional Specifications 53

3.2.2 Performance 54
.3.2.3 Characteristics and Constraints 54

.3.3 The Development Environment 56
3.4 Hardware Development 56
3.4.1 Board-Level Hardware 57

3.5 System Software o 61
3.5.1 Operating Systems and Application Programs 61

3.5.2 High-Level Language and Assembly Language T 62

3.5.3 Development Systems 63
Summary 64
Exercises 64
Bibliography 66

Part 2 High-Level Design

4 Design of Real-Time Systems 69
4.1 The System-Development Cycle 69
4.2 Analysis of System Requirements n
4.2.1 Requirements Document 71

422 Response-Time Specification 73

4.2.3 Specification of the Haman Interface 73

4.3 Preliminary System Design 74
4.3.1 Block Diagram 74

4.3.2 Representation of Control Flow 75

4.3.3 Representation of Data Flow 78

4.3.4 Functional Decomposition 80

4.3.5 Relationships among Functions 83

4.4 Division into Modules ’ 83
4.41 Definition of a Module 8

4.4.2 Advantages of a Modular Design 86

4.5 Preliminary Estimates of Development Cost and System

Performance 86

4.6

4.7

4.8
4.9
4.10

5.2

5.3

5.4

4.5.1 Required Development Time
4.5.2 Estimating Program Length

4.5.3 Estimating Memory Requirements
4.5.4 Estimating Execution Speed
Division between Software and Hardware
4.6.1 Hardware-Software Tradeoffs
4.6.2 Hardware-Software Tradeoff Example
Software Design

4.7.1 Structured Flowcharts

4.7.2 Nesting and Stepwise Refinement
Design Review

Translating the Design into a Program
Testing the Module

4.10.1 Limitations on Testing in Real-Time Systems
4.10.2 Planning for Testing

4.10.3 Test Software: Drivers and Stubs
4.10.4 Program Instrumentation
Summary

Exercises

References

Bibliography

Programming Languages

Machine and Assembly Language

5.1.1 Machine-Language Programming

5.1.2 Assembly-Language Programming

5.1.3 Format of Assembly Language Programs

5.1.4 The Assembly Process

5.1.5 Relocating Assemblers

5.1.6 Native and Cross Assemblers

5.1.7 Macroassemblers

5.1.8 Structured Assemblers

5.1.9 Limitations of Assembly Language

High-Level Languages .

5.2.1 Compiled, Interpreted, and Intermediate Code Languages

5.2.2 Systems Programming Languages and Applications
Languages

Choosing between Assembly and High-Level Languages

5.3.1 Advantages of High-Level Languages

5.3.2 Disadvantages of High-Level Languages

Requirements for Real-Time High-Level Languages

5.4.1 Speed and Efficient Use of Memory

5.42 Benchmarks

5.4.3 Interface to Assembly Language

5.4.4 Compiler Utilities

5.4.5 Producing ROMable Programs

5.4.6 Access to the Computer’s Hardware

5.4.7 Bit-Manipulation Operations

5.4.8 Reentrancy

103

103
103
104
105
107
110
112
112
113
114
114
115

117
118
118
120
121
121
122
123
123
125
125
126
126

xii CONTENTS

55 Some Real-Time Programming-Languages 127
5.5.1 BASIC : 127
5.5.2 FORTRAN 128
5.5.3 FORTH 129
5.54 PL/M 130
5.5.5 Pascal 131
5.5.6 Ada 132
557 C 133
5.6 . Choosing a Language 133
Summary 134
Exercises 135
References 136
Bibliography 136

6 Software Design Examplée: An I/O Driver
for a Simple Peripheral Device 137
6.1 The Pro-Log 7303 Keypad/Display Card 138
6.2 Display Handler 139
6.2.1 Programmer’s Model of the Display 139
6.2.2 Design of Display Handler Function 140
6.3 Keypad Handler 144
6.3.1 Programmer's Model 144
6.3.2 ,Keypad Scanning 144
6.3.3 Keypad Debouncing 146
6.3.4 Keypad Handler Design 147
Summary 152
Exercises 153
Bibliography 153

Part 3 Lower-Level Considerations

7 Integrating Assembly-Language Components 157
7.1 Processor Background Information. Required 157
7.1.1 Programming Model of the CPU 158
7.1.2 Representation of Data in Memory 162
7.1.3 Representation of Instructions in Memory 165
7.1.4 Instruction Format in Assembly Language 166
7.1.5 Addressing Modes 167
7.1.6 Instruction Set Description 182
7.2 Assembly-Language Programming: 182
7.3 Subroutine Calls and Returns 183
7.4 Subroutine Parameters 186
7.4.1 Parameters in Registers 186
7.4.2 Parameters in Dedicated Memory 187
7.43 In-Line Parameter Area 188
7.4.4 Parameter Passing on the Stack 189
7.5 Linking High- and Low-Level Programs 192
7.6 Startup Routines 194

7.7

8.2

8.3

8.4

9.1
9.2
9.3

9.4

Computer Interrupt Systems and Service Routines
7.7.1 Interrupt Systems and Events

7.7.2 Example of an Interrupt System

7.7.3 The Interrupt Service Routine

Summary

Exercises

Bibliography

Fundamental Technological Alternatives

Semiconductor Technologiés

8.1.1 Field Effect Transistors

8.1.2 MOS Logic Circuits

8.1.3 Bipolar Transistors

8.1.4 Bipolar Junction Transistor Logic
8.1.5 Other Technologies

8.1.6 Comparison of Main Technologies
Choice of Integration Level

8.2.1 Turnkey Systems

8.2.2 Prepackaged Systems

8.2.3 Board-Level Design

8.2.4 Component-Level Design

8.2.5 Semicustom Integrated-Circuit Design
8.2.6 Full Custom Design

Memory Technologies

8.3.1 Random Access Memory (RAM)
8.3.2 Read-Only Memory (ROM)

8.3.3 Structure of a Memory Chip
8.3.4 Selection Factors

Microprocessor Technology

8.4.1 Performance

8.4.2 Architectural Features

Summary

Exercises

References

Bibliography

Interfaces to External Signals and Devices

Parallel Input Interfaces

Parallel Output Interfaces

Digital-to-Analog Conversion Interface

9.3.1 Digital Representation of Analog Voltage
9.3.2 Full-Scale Voltage

9.3.3 Other Specifications
Analog-to-Digital Conversion Interface
9.4.1 Successive Approximation A/D
9.4.2 Dual Slope A/D -

9.4.3 Flash Converter

9.4.4 Sample-and-Hold Circuit

9.4.5 The Multiplexer

CONTENTS Xxiil

195
196
206
209
211
212
214

216

217
217
218
220
220
221
221
222
223
223
224
224
226
227
228
229
229
230
232
233
234
235
235
236 .
237
237
}
238
240
242
243
243
245
245
247
248
248
249
249
249

xiv CONTENTS

9.5 Real-Time Clock Interfaces 250
9.6 Direct Memory Access Interfaces 252
9.6.1 Interface Description 252
9.6.2 DMA Interface to a Floppy Disk 255
Summary 260
Exercises 261
Reference 262
Bibliography 262
Part-4 Connected Systems
10 Serial Communications 265
10.1 The EIA RS-232-C Interface Standard - 270
10.1.1 Mechanical Specifications 27
10.1.2 Functional Specifications 272
10.1.3 Electrical Specifications 273
10.1.4 Other Related Standards 274
10.2 The IEEE-488 Interface Standard 275
710.2.1 Mechanical Specifications 277
10.2.2 Functional Specifications 278
" 10.2.3 Electrical Specifications 285
Summary 288
Exercises 288 -
Bibliography 289
11 Input Systems 291
11.1 Sensors with Binary-State Outputs 292
11.2 Sensors That Produce Binary Pulse Trains 295
11.3 Sensors That Produce Continuous Analog Signals 297
11.3.1 Error Sources 298
11.3.2 Error Analysis 299
11.3.3 Integrated Semiconductor Pressure Sensors 300
11.3.4 Potentiometers 302
11.3.5 Resistance Temperature Detector (RTD) 304
11.3.6 Thermistor 305
11.3.7 Integrated Semiconductor Temperature Sensor 306
11.4 Signal Conditioning Circuits 307
11.4.1 Differential Amplifier 307
11.4.2 Instrumentation Amplifier 309
11.4.3 Analog Isolation Amplifiers 311+
11.4.4 Digital Isolation 312
11.4.5 Low-Pass Filtering 313,
11.4.6 Gain Conversions and Level Shifting 314,
11.5 Transmission Circuitry 315
11.5.1 Short-Rangé Analog Signal Transmission 316
11.5.2 Medium-Range Analog Signal Transmission 316
11.5.3 Long-Range Analog Signal Transmission 317

CONTENTS XV

11.6 Bus-Compatible Input Systems 318
Summary 319
Exercises 319
Bibliography . 321

12 Output Systems 322

12.1 Output Systems Involving Two-State Actuators 322
12.1.1 Output Port Current and Voltage Ratings o 323
12.1.2 Low- and Medium-Power Switches . 324
12.1.3 Electrically. Isolated Switches 327
12.1.4 Influence of the Actuator on Switch Ratings 331

12.2 Output Systems with Continuous Actuators R 334
12.2.1 Low to Medium-Power Amplifiers 334
12.2.2 Pulse-Width Modulated Amplifiers 336

12.3 Examples of Actuator Systems 337
12.3.1 Stepping Motors , 337
12.3.2 Dc Servo Motors 347
Summary 354
Exercises 355
Bibjjography 355

Part 5 Board-Level Design
13 Board-Based Microcomputer Systems . 359

13.1 The Backplane Bus 361
13.1.1 Address and Data Lines .. 363
13.1.2 Lines to Control Data Transfer 364
13.1.3 Interrupt Control Lines 367
13.1.4 Bus Request Arbitration 368
13.1.5 Adapting Microprocessor Control Lines to Bus Control

Lines 369
13.1.6 Power-Supply Lines 369
13.1.7 Bus Electrical Characteristics 370
13.1.8 Bus Physical Characteristics ~ 372

13.2 Boards for Bus Systems - 373
13.2.1 CPU Boards 373
13.2.2 Memory Boards 374
13.2.3 Peripheral Device Controller and I/0 Boards 375

13.3 Development of Backplane Bus Standards 376

13.4 Some Important Backplane Bus Standards 37
13.4.1 STD (IEEE P961) Bus _ 377
13.4.2 IBM Personal Computer Bus 378

L 13.4.3 S-100 (IEEE S696) Bus _ 380
13.4.4 Multibus (IEEE S796) : 381 .5
13.4.5 VME (IEEE P1014) Bus : 382

13.5 Selecting a Bus System 385
Summary : 386
Exercises 386

Bibliography 388

XVi CONTENTS

14
14.1

14.2
14.3

14.4

14.5

14.6

14.7

14.8

14.9

Example of a Board-Level System Design

A Torque Wrench for Industrial Robots
14.1.1 System Operating Cycle

14.1.2 System Components

System Specifications

Basic System Design

14.3.1 Flow of Control: Algorithmic State-Machine Diagram
14.3.2 Decomposition into Functions—Tree diagram
14.3.3 Estimating Program Length
14.3.4 Module Specification

Hardware Specifications

14.4.1 Microcomputer and System Bus
14.4.2 Analog-to-Digital Converter
14.4.3 Solenoid Drivers

14.4.4 Serial Communications Interface
14.4.5 Power Supply

14.4.6 Timer Function

Hardware Selection

14.5.1 Microcomputer Board

14.5.2 Analog-to-Digital Converter
14.5.3 Solenoid Drivers

14.5.4 Serial Communications Interface
14.5.5 Power Supply

14.5.6 Packaging

Hardware Configuration

14.6.1 Power Supply

14.6.2 Microcomputer Board

14.6.3 Analog-to-Digital Converter Board
14.6.4 Solenoid Driver Interface

14.6.5 Serial Interface

Software Design I: High-Level Routines
14.7.1 State Sequencer

14.7.2 WAIT State

14.7.3 GRIP and ACK States

14.7.4 FASTEN State

14.7.5 FAULT State

Software Design II: 1/O Driver Routines
14.8.1 Solenoid Drivers

14.8.2 Analog-to-Digital Converter
14.8.3 Serial Interface

14.8.4 Real-Time Clock

Software Design III: Assembly-Language Functions and System

Initialization
14.9.1 Programmer’s Model of the Microprocessor
14.9.2 System Initialization: Stack Pointer
14.9.3 System Initialization: Interrupt System
14.9.4 Interrupt Handling
14.9.5 Linking the Software Modules
14.9.6 Interface and Variable Initialization

390

390
391
392
392
397
397
397
397
399
399
399
399
401
403
403
403

406
407
409
410
412
413
414
415
419
420
421
421
423
425
426
427
430
431
431
432
434
440

443
444
446
447
448
450
450

CONTENTS Xvii

Summary 451
.Exercises 451
Bibliography 452

Part 6 Implementation Tools
15 Development Systems 457
15.1 Peripheral Devices 458
15.2 Operating System 459
15.3 Editor 459
15.4 Object-Code Generation 460
15.5 Software Integration 460
15.5.1 Downloading 460
15.5.2 EPROM Programming 462
15.6 Software Debugging 463
15.7 Other Software-Development-System Capabilities 466
15.8 Examples of Available Development Systems 467
15.9 Selection of a Development System 471
Summary 472
Exercises 473
~ References 474
Bibliography 474
16 Operating Systems 475
16.1 Introductory Concepts and Terminology 475
16.1.1 Basic Elements of an Operating System 475
16.1.2 Operating-System Facilities 477
16.2 Operating Systems for Microcomputer Development Systems 479
16.2.1 The CP/M Operating System 480
. 16.2.2 The UNIX Operating System 481
16.3 Real-Time Operating Systems 482
16.3.1 Tasks and Task Scheduling 483
16.3.2 Task Synchronization and Data Transfer 489
16.4 Factors in Selecting a Real-Time Operating System 494
Summary) 495
Exercises 496
Bibliography 498
Appendixes

A Binary Numbers and Codes 499
A.1 Binary Numbers -« 499
A.1.1 Unsigned Binary Numbers 499
A.1.2 Representation of Signed Binary Numbers 500
A.2 Binary-Coded Decimal Numbers 501
A.3 Hexadecimal and Octal Numbers 502
A.4 Kbytes and Mbytes 503

xviii CONTENTS

A.5 Character Codes 504

A.6 Logical Operations 504!
Exercises 506

B Basic Logic Devices 508
B.1 Logic Functions 508
B.2 Combinational Logic Devices ~ ' 509
B.3 Sequential Logic Elements 512
B.4 Logic Electronics and Limitations 514

C Motorola MC68000 Family Instruction Set 519

D Intel 8086/8 Family Instruction Set . 521
E The C Programming Language 523
v E.1 Basic Elements of a C Program . 523
E.1.1 Functions ’ 523
E.1.2 Statements 525
E.1.3 Blocks 525
E.1.4 Constants 526
E.1.5 Variables 526
E.1.6 Comments 526
E.2 Variable Names and Constants 526
E.2.1 Identifiers * 526
E.2.2 Numerical Constants 528
E.2.3 Character Constants » 529
- E3 Dcclaratlons and Variable Types . 529
E.3.1 The auto Storage Class 530
E.3.2 The static Storage Class 531
E.3.3 The extern Class 531
E.3.4 Integer Variable Types : v 532
E.3.5 Real Variable Types 532
E.3.6 Character Type 532
E.3.7 Arrays 533
E.4 Qperators and Expressions ‘ 533
E.4.1 Arithmetic Operators 533
E.4.2 Assignment Operators 534
E.4.3 Increment and Decrement Operators 534
E.4.4 Bitwise Logical Operators 535
E.4.5 Relational Operators 537
E.4.6 Logical Connective Operators 537
E.4.7 Precedence of Opexators 53T
E.4.8 Expressions with Mixed-Variable Types S
E.5 Statements and Control Structures 539
E.5.1 The if else Statement : 540
E.5.2 The switch Statement e 538
E.5.3 The while and do while Statements . 542

E.5.4 The for statement) 543

