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FOREWORD

Lotfi A. Zadeh

1 is hard o corestimate the inpertance of tis texthook . Bart Kosko s bioken
new grotnd with an outstanding work on o subject, adaptive fuzrzy systenis, ecitin
¢

to play an increasingly cotrad mobe o sdersstanding of humun copnttion
our abifity 1o build machines that simulate hunan decision making i uncertain ol
IMprecise e liopments,

This is what artiticial welhgence (AL was supposed 10 do when it was ven
ceived in the mid- 1950, Since then, tradinional AL based almost entitely on aympol
mampulation and first-order logic, bas attractesd o great deal of attication. o farge o
lowing, and massive fnancial support. The AL community can poist with i
1o its accomplishments in expert systeme, gurae plaving svstems, and, o & losse:
extent, natural language processinge. Yot many of ux befieve that tradiiional Al hae
not lived up to s expectations. Al has not come 1o grips with common sease i
sontng. Bt bas not contributed sizuticantly 1o the ~soluiion of reak-aorkd probiems
in robotics, computer vision, speech recopmtion. and imachine transtation. And Al
aretably has not led to a stenibcantly bertcr understanding of thonght processes,
carwept formation, and pattern recognition.

I helieve Al would have made much more progress toward its goals if it had no
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xviii FOREWORD

commitied itself so exclusively to symbol manipuiaion and first-order jogic. T
cominitment has made Al somewhat inhospitable 1o niethads that involve puimnerical
computations, inchuding neural and fuzzy methods, and has severcly hmited ats
ability to deal with problems where we cannot benignly negleci uncertaioty and
mprecision. Most real-world probiems fall inio this category. .

With this in view, we can better understand the growing popularity of numer-
ical methods that dea) with a wide range of real-world problems, problems Al has
failed to solve if even address. Prominent among these numerical techniques arc
neural network theory and fuzzy theory. Separately and in combination, neural nei-
works and fuzzy systems have helped colve a wide variety of problems ranging from
process control and signal processing to fault diagnosis and system optimization.
Professor Kosko's Neural Networks and Fuzzy Systems, along with its companion
applications volume Newral Networks for Signal Processing, is the first book to
present a comprehensive account of neural-network theory and fuzzy logic and how
they combine to address these problems. Having contributed so importantly to both
fields, Professor Kosko is uniquely qualified to write a book that presents a unified
view of neural networks and fuzzy systems. This unified view is a direction certain
to grow in importance in the years ahead.

Interpolation plays a central role in both neural network theory and fuzzy logic.
Interpolation and learning from examples involve the construction of a model of
a system from the knowledge of a collection of input-output pairs. In neural net-
works, researchers often assume a feedforward multilayer neiwork as an approx-
imation {framework and modify it with, say, the backpropagation gradient-descent
algorithm. In the case of fuzzy systems, we usually assume the input-output pairs
have the structurc of fuzzy if-then rules that relate linguistic or fuzzy variables
whose values arc words (fuzzy sets) instead of numbers. Linguistic variables fa-
cilitate interpolation by allowing an approximate match between the input and the
antecedents of the rules. "Generally, fuzzy systems work well when we can use
experience or introspection to articulate the fuzzy if-then rules. When we cannot
do this, we may need ncural-network techniques to generate the rules. Here arise
adaptive fuzzy systems. . .

One cannot be but greatly impressed by Professor Kosko’s accomplishment as
author of Neural Networks and Fuzzy Systems. This seminal work is a landmark
contribution that will shape the development of neural networks and fuzzy sysiems
for years to come. '

Lotfi A. Zadeh
Department of Electrical Engineering
and Computer Science
Computer Science Division
“University of California 2t Berkelev



FOREWORD

James A. Anderson

We live in a world of marvelous complexity and variety, a world where events never
repeat exactly. Heraclitus commented two anda half millennia ago that “We never
step twice into the same river.” But even though events are never exactly the same,
they are also not completely different. There is a thread of continuty, similarity,
and predictability that allows us to generalize, oftent correctly, from past experience
to future events. '

This textbook joins together two techniques—-neural networks and fuzzy
systems—that seem at first quite differeat but that share the cenunon ability to
work well in this natural envirowmnent. Although there dre other important reasons
for interest in them, from an engineering point of view much of the interest in
neural networks and fuzzy systems has been for dealing with difficulties arising
from™ uncertainty, imprecision, and noise. ‘The more a problem resembles those
encountered in the real world-—and most interesting problems are these—the better
the system must cope with these difficulties.

Neural networks, neurocomputing, or “brainlike” computation is based on the
wistiul hope that we can reproduce at least some of the fexibility and power of the
human brain by artificial means. Neural networks consist of many simple computing
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clements—gencrally simple nonlinear summing junctions—connected together by
connections of varying strength, a gross abstraction of the brain, which consists of
very large numbers of far more complex neurons connected together with far more
complex and far more structured couplings.

Neural-network architectures cover a wide range. In one sense, every com-
puter is a ncural net, because we can view ‘traditional digital logic as constructed
from interconnected McCullough-Pitts “neurons’. McCullough-Pitts ncurons were
proposed in 1943 as models of biological neurons and arranged in neiworks for the
specific purpose of computing logic {unctions. The architectures of current neurai
networks are massively parallel and concerned with approximating input-outpisi re-
lationships, with very many units arranged in large paraltel arrays and computing
stmultaneously. Massive parallelism is of great importance now that the speed of
- light begins to constrain computers of standard serial design. Large-scale paraticlizm
provides a way, perhaps the only way, to significanily increase compuier speed.
Even limited insights and crude approximations into how the brain combines slow
and noisy computing devices into powerful systems can offer considerable practical
value. ,

As this textbook shows, even the simple networks we now work with can
perform interesting and useful computations if we properly choose the problem. In-
deed, the problems where artificial neural networks have the mosi promise are those
with a real-world flavor: signal processing. speech recognition, visual perception,
control and robotics.

Neural networks help solve these problems with natural mechanisnis of gener-
alization. To oversimplify, suppose we represent an object in a network as a pattern
_of activation of several units. If a unit or two responds incorrectly, the overall pat-
tern stays pretty much the same, and the network still responds correctly to stimuli.

Or, if an object, once seen, reappears, but with slight differences, then the pattern’

of activation representing the object closely resembles its previous appearance, and
the network still tends to respond almost as it did before. When neural networks
operate, similar inputs naturally produce similar outputs. Most real-world perceptual
problems have this structure of input-output continuity.

If neural networks, supposedly brain-like, show intrinsic generalization, we
might wonder if we observe such effects in human psychology. Consider the psy-
chological problem .of categorization. Why do we call a complex manufactured
object found in a house, an object we have not seen before, a “chair” because
it has a more-or-less flat part a couple of feet off the floor, has four legs, con-
sists of woed, and so on? One approach to categorization—popular with computer
scientists—makes a list of properties and matches the new object with the property
list. If the new object matches a listed property, then we conclude that the object
is an example of the category; otherwise, we conclude that it is not. One quickly
discovers with this approach that it does not work in practice’ Natural categories
tend to be messy: Most birds fly, but some do not. Chairs can consist of wood,
plastic, or metal and can have almost any number of legs, depending on 4be whims
of the designer. Tt seems practically impossible to come up with a property list
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for any natural category that excludes all examples that are not in the category and
includes all exaraples that are in the category.

The “‘prototype™ model provides a model for human categorization with a good
deal of psychological support. Instead of forming a property list for a category, we
store a “best example” of the category (or possibly a few best examples). The system
computes the similarity between a new example and the prototype and classifies the
new example as an example of the category in the nearest-neighbor sense—if the
new example is “'close cnough” to the prototype.

This computational strategy leads to some curious human psvchology. For
example. it seems that most people in the United States imagine a prototype bird
that looks somewhat fike a robin or a ~parrow. (Of course, the prototype will depend.
sometimes in predictable ways on individual experience.) So Americans tend 1o
judge ostriches or penguins as “bad™ birds because these birds do not resemble the
prototype bird. even though they are birds. “Badness” shows up in a number of
ways: when people are asked to give a list of examples of “birds,” prototypicai
birds tend to head the list: the response times to verify sentences such as “Penguins
are birds” tend to be longer then to “Robins are birds:” and they put the prototypes
mto sentences as detaults m comprehension—the bird in 1 saw a'bird on the lawn™
is probably not a turkey.

Neural networks naturally develop this kind of category structure. In fact, we
can hardly stop neural networks from doing it, which points out a serious potential
weakness of neural networks  Classification bv similanity causes neural networks
great distress In situations where we cannot trust similarity.

A famous example is “parity”—whether there are an even or an odd numbe:
ot ones i a bit vector of ones and zeros [ we change only one element, then the
parity changes. So nearest neighbors always have opposite parity. Parity causes
no difficulties for digital logic. But it is so difficult for simple neural networks to
compute the parity {unction that it, and related problems, caused the engineering
community to lose interest in neural networks in the 1960°s when computer scien-
tists first pointed out this limitation. Yet such a pattern of computational strengths
and weaknesses was exactly what excited the interest of psychologists and cogni-
tive scientists at the same time. The problems that neural networks solved well and
sulved poorly were those where humans showed comparable strengths and weak-
nesses in their “cognitive computations.” For this reason until quite recently most
of the study of neural networks has been carried out by psychologists and cognitive
scientists who sought models of human cognitive function.

Engineering techniques for dealing with uncertainty are sometimes as much
statements about human psychology as they are about engineering. Neural networks
deal with uncertainty as humans do, not by deliberate design, but as a byproduct
of their paraliel-distributed structure. It would be equally possible, and perhaps
desirable, for us to directly build these insights about categorization into an artificial
system. Fuzzy systems take this approach.. ‘

Fuzzy or multivalued set theory develops the basic insight that categories
are not absolutely clear cut: a particular example of a category can “belong” to
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lesser or greater degree to that category. This assumption captures quite nicely the
psychological observation that & particular object can be a better or worse example
of chair, depending on other members of the category. For example, an appropriately
shaped rock in the woods can be a “chair” even though it is a very bad example
of the chair category. So we can consider the rock as weakly belonging to the
chair category. When such insights are properly (and elegantly) quantified, as in
this textbook, “fuzzy” systems can be just as well defined and useful as the more
traditional formulations of statistics and probability.

The thgorv of probability arose historically from an attempt to quantify odds
in gambling, particvlarly the statistics of thrown dice, and in the more respectable
type of gambling called insurance. Assumptions that color the basic structure of
probability theory and statistics may arise from trying to explain a system that was
specifically designed by bumans for a particular purpose. For example, the rules for
wining and losing in a game should be clear and precise because money may change
hands. Every possible game outcome must fall into a predetermined category. These
categories are noise free: the sum of the dice equals six and not seven; a coin comes
up heads or tails. Individuals in the vital statistics of a population are alive or dead,
baptised or unbaptised.

Because games are precise by design, traditional probability theory assumes an
accuracy and precision of categorization of the world that may not represent many
important problems. We must wonder what would have happened if, instead of being
concemed with gamnbling or insurance, probability theory had been initially devel-
oped to predict the weather, where there are continuous gradations between overlap-
ping linguistic categones: dense fog, drizzle, light rain, heavy rain, and downpour.

- Perhaps fuzzy systems would have become the mainstream of uncertainty-reasoning
formalisms and “traditional’ probability an extreme approximation useful in certain
special cases. The reaction of most people when they first hear about fuzzy logic
is the subjective feeling " Yes, this formulation makes sense psychologically.”

Because general statements about both human psychology and the structure
of the world embed so deeply in both neural networks and fuzzy systems, the
introductory parts of this book contain several examples drawn from philosophy,
biology, cognitive science, and even art and law. These examples and references
are not there to show the author’s erudition, but to illuminate and make explicit the
basic assumptions made when building the models. Unfortunately, neuroscientists
and engineers often lie in unconscious bondage to the ideas of dead philosophers and
psychologists when they assume that the initial formulations and basic assumptions
of their abstract systems are “obvious.” Like social customs, these assumptions are
obvious only if you grew up with them.

There are also significant differences between neural networks and fuzzy sys-
tems. There are formal similarities between them, as Professor Kosko points out, but
they are also very different in detail. The noise and generalization abilities of neural
networks grow organically out of the structure of the networks, their dynamics, and
their dara representation. Fuzzy systems start from highly formalized insights about
the psychology of categorization and the structure of categories found in the real
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world. Therefore, the “theory of fuzziness™ as develeped is an abstract system that
makes no further claims about bielogical or psychological plausibitity. This abstract
system may sometimes be easier to use and simpler to appiy to a particular problem
than neural networks may be. The reverse may also hold. Whether to use one or
another technology depends on the particular application and on good engineering
judgement.

Both neural networks and fuzzy systems break with the historical tradition,
prominent in Wester *hought, that we can preciscly and unambiguously characterize
the world. divide it intc curagorizs, and then manipulate these descriptions according
to precise and formal rulc.. Other traditions have a less positive approach to explicit,
discrete categorization, ove more in harmony with the 1deas presented here. Huang
Po, a Buddhist teache. <t the ninih century, otserved that “To make use of your
minds tc think conceptually 1s to leave the substance and attach yourself to formi”
and “from discrimination between this and that a host of demons blazes forth!”

James A. Anderson
Department of Cognitive and Linguistic Sciences
Brown University




PREFACE

Neural networks and fuzzy theory have been underground technologies for many
years. They have had far more critics than supporters for most of their brief his-
tories. Until recently most neural and fuzzy researchers published and presented
papers in non-neural and non-fuzzy journals and conferences. This has prevented
standardization and suggested that the two fields represent pantheons of ad hoc
models and techniques.

This textbook presents neural networks and fuzzy theory from a unified ¢ngi-
neering perspective. The basic theory uses only elementary calculus, linear algebra,
and probability, as found in upper-division undergraduate curricula in engineering
and science. Some applications use more advanced techniques from digital sig-
nal processing, random processes, and estimation and control theory. The text and
homework problems introduce and develop these techniques. '

Neural networks and fuzzy systems estimate functions from sample data. Sta-

tistical and artificial intelligence (AI) approaches also estimate functions. For each

problem, statistical approaches require that we guess how outputs functionally de-
pend on inputs. Neural and fuzzy systems do not require that we articulate such a
mathematical model. They are model-free estimators.

xxv
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We can also view Al expert systems as model-free estimators, They map
conditions to actions. Experts do not.articulaie a mathematical transfer funciion
from the condition space to the action space. But the Al framework is symbolic.
Symbolic processing favors a propositional and predicate-calculus approach to ma-
chine inteliigence. It does not favor numerical mathematical anatysis or hardware
implementation. In particular symbols do not have derivatives. Only sufficiently
smooth functions have derivatives. Symbolic systems may change with time, but
they are not properly dvnamical systems. not systems of first-order difference or
differential equations.

Neural and fuzzy systems are numerical model-free estimators, and dynami-
cal systems. Numerical algorithms convert numerical inputs to numerical outputs.
Neural theory embeds in the mathematical fieids of dynamical systems, adaptive
control, and statistics. Fuzzy theory overlaps with these fields and with probability,
mathematical logic, and measure theory. Researchers and commercial firms have
developed numerous neural and fuzzy integrated-circuit chips. High-speed modems,
long-distance telephone calls, and some airport boinb detectors depend on adaptive
neural algorithms. Fuzzy systems run subways, tune televisions and computer dise
heads, focus and stabilize camcorders, adjust air conditioners and washing machines
and vacuum sweepers, defrost refrigerators, schedule clevators and traftic lights, and
control automobile motors, suspensions, and emergency braking systems. In these
cases. and in general, we use neural retworks and fuzzy systems to increase machine
1Q. » ~

The book contains two large sections. The first section develops neural net-
work theory. It presents neural dynamical systems as stochastic gradient systems.
Chapter 1 previews the main neural and fuzzy homcs 2ovcloped trooghout the
text, focusing on hybrid neural-fuzzy systems for estimation and contro}. Chapter 2
presents neurons as signal functions and establishes notation. Chapter 3 develops
both simple and general models of how the neuron’s membrane evolves in time.
Chapter 4 focuses on unsupervised synaptic learning and reviews probability theorv
and random processes. Chapter 5 presents supervised synaptic learning as stochas-
tic approximation. Chapter 6 combines the material in previous chapters, allows
neurons and synapses to change simultaneously, and proves global equnllbnum and
stability theorems for feedforward and feedback neural networks.

The second section examines fuzziness and adaptive fuzzy systems. Chap-
ter 7 presents the new geometric theory of fuzzy sets as points in unit hypercubes.
Chapter 7, as its “Fuzziness versus Probability” title suggests, deals in part with the
apparent conflict between probability theory and fuzzy theory. This unavoidably
evokes a polemical flavor and may jolt the unsuspecting reader. The pungency of
_ the underlying journal article, of the same title, has helped secure it a much wider
audience than 1 had thought possible. After teaching and lecturing on fuzzy theory
for several years. I have found that audiences always ask the questions Chapter 7
anticipates. For these reasons I have included it in this textbook in its fuzzy-versus-
probability form. I develop formal probability theory in the first four chapters of the
textbook. I view its relation to fuzzy theory as taxonomical not adversarial. Chap-
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ter 8 develops a new theory of fuzzy systems and shows how ¢ combine neura and
fuzzy systems to produce adaptive fuzzy systems. Chapter § compares neural and
adaptive fuzzy systems for backing up a truck, and truck-and-irailer, to a loading
dock in a parking lot. Chapter !0 applies the adaptive fuzzy methodology to signal
processing and compares a fuzzy image transform-ceding system with a populer
alyorithmic. approach. Chapter 11 benchmarks an adaptive fuzzy system against &
Kalman-filter controller for real-time target tracking. The Appendix discusses how
to use the accompanying neural-network and fuzzy-system software, developed v
HyperLogic Corporation, and Olmsted & Walkins, and Togai infralogic.

For this textbook T have alse edited for Prentice Hall a companion volume
of neural applications. Neural Networks for Signal Processing. The edited voiume
extends and applies several of the neural-network models developed in tits teatboox.
All chapters in the edited volunie include detailed homework probleiiss to assist in
classroom instruction.
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