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Preface

This is the Second Edition of a handbook that was considered a land-
mark in technical publishing when it was first issued in 1957. Owing
to the remarkable developments in electronics technology over the
past decades, this Second Edition is a completely new work and is
more than twice the size of the First Edition.

*Major goals for the Second Edition were: (1) the introduction of
solid-state technology and design, (2) uniform use of SI (metric)
units throughout, and (3) increased use of analytical design tech-
niques to reflect the greater sophistication of today’s electronics
designers. The uniform employment of SI units simplifies the pres-
entation of results, since there is no need to recite units associated
with equations. All equations are dimensionally correct with the in-
troduction of SI units. Also, there are a large number of conversion
tables, which facilitates conversion to other units as may be required.

A handbook represents yet another step in the consolidation of pro-
fessional knowledge. In view of the explosive growth of relevant lit-
erature during the past 20 years, careful selection was required to
keep the size of the Second Edition within bounds. To cull, winnow,
and select from the trémendous amount of available literature and
then to organize the material in a systematic fashion was a major task.

Consistency in the use of symbols, letters, and designations was a
frustrating and time-consuming problem. Conflicts in usage in the lit-
erature are frequent, and it is a struggle to resolve these conflicts. Ina
few cases the conflicts were resolved by introducing special symbols,
butby and large the Handbook has hewed closely to established stan-
dards, particularly those of the electronics profession. Perhaps this
Handbook will serve as a focus for more universal and uniform use of
standard symbols, letters, and designations, as significant time is
required to adjust to unfamiliar designations. Readers will find Sec-
tion 1 particularly useful for resolving questions of units, symbols,
and designations. '

This Handbook has been organized with the basic developments
first, followed by numerical tabulation of material properties. Next,
components, circuit analysis, and circuit design are introduced, and
one progresses from smaller to larger systems. Each section has been
structured to be largely independent, with a separate table of con-
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tents, footnotes, exercises, and a. bibliography of related material.
The Electronics Designers’ Handbook will be a valuable on‘,e-volulme
source book for a spectrum of electronics designers, from hands-on
designers to analytical designers. Ease. of usage has been enhanced
by extensive tabular and graphical information. Circuits, many with
component values included, are described, evaluated, and compared
with alternatives. By deliberate intent, all figures have been exten-
sively anpotated to serve as additional information sources.

The First Edition was successfully used as a textbook, and it is to be
hoped  that the. Second Edition will be too. A good basic educa-
tion in electronic design is contained -within the covers of this
Harldbook. The organization, annotation, and many worked-out ex-
- ercises make it suitable for use as a textbook or for self-learning. 1
have used some sections-in the classroom and would be pleased to
‘learn about the experiences of others 'in this regard. .

The value of a handbook is compromised if accuracy is doubtful
Considerable time and effort have been expended in ten separate
proofreadings to eliminate errors, but some may exist. I would ap-"
preciate their being brought to my attention so that corrections can
be made at the “first opportunity.

L. J. Giacoletto
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1.1. International System of Units. In 1964 the National Bureau of Standards (U.S.)!
announced the policy of using the International System (SI) of independent units as
defined and given official status by the 11th General Conference on Weights and Meas-
ures, Paris, October 1960. See Table 1.1.

TABLE 1.1 Base Si Units

Quantity Unit Symbol

Length ... meter m
MASS oo kilogram kg
TiMe oo second s
Electric current.. .. ampere A
Temperature ..................... kelvin K
Amount of substance.......... mole mol
Luminous intensity............ candela cd

1 National Bureau of Standards (U.S.), Units of Weights and Measure, NBS Misc. Publ. 286, May
1967. See also Int. Stand. ISO 1000, S1 Units and Recommendations for the Use of Their Multiples
and of Certain Other Units, Ist ed., American National Standards Institute, New York, 1973.
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1.2

-

The supplementary units shown in Table 1.2 are dimensionless. The following addi-
tional dimensionless units will be used: cycle =27 radians = c; revolution =27

radians = r; turn = 27 radians = n.

TABLE 1.2 Suppiementary Si Units

Quantity Unit Symbol
Plane angle............ radian rad
Solid angle ............ steradian sr

The independent units as well as other derived units can be multiplied or submulti-

plied as shown in Table 1.3.

TABLE 1.3 Official Decimal Multiples and Submultiples

Multiple or Multiple or
submultiple Prefix Symbol submultiple Prefix Symbol
10 exa E 10! deci d
101 peta P 10~ centi ¢
10" tera T 102 milli m
10° giga G 10—* micro m
10* mega M 10~ nano n
10° kilo k 10—t pico p
107 hecto h 10~ femto f
10 deka da 10 atto a
The approved derived SI units are listed in Table 1.4.
TABLE 1.4 Derived SI Units
Unit
Quantity Unit symbol Dimension
Energy ..coovvvivcncecanireennnnnn, joule J kg m* s7?
Power......oooovviimiiiniiiiicece watt w kg m¥s¥=] s
Force.....ocvvvnennn. newton N kgms?=]m!
Electric charge .. .. coulomb C As
Voltage........ccenvevenes . volt v kgmis3=] Ats!
Electric field strength.. . volt per meter Vim kgms3=Vm
Electric flux density. ... coulomb per meter squared C/m? Asm™
Electric capacitance . . farad F Alstkg ' mit=As V)
Magnetic flux .......... . weber Wb kgmis?A'=Vs
Magnetomotive force... . ampere A, A
Magnetic field strength.. .. ampere per meter A/m Am™!
Magnetic flux density.. ... tesla T kgs A '=Vsm?
Inductance,............. . henry H kgm?s? A2=Vs A~
Electrical resistance............... ohm 0 kgm?sP A2=VA"
Electrical conductance siemens S A*s*m-t kgl = AV}
Frequency ......ccceevevereeennnennnn. hertz Hz s'=cs™!
Velocity .... . meter per second m/s ms™!
Acceleration .. meter per second squared m/s? ms™?
Area.:....... . square meter m? m?
Volume.. ... cubic meter m? m?
Density.. .. kildgram per cubic meter kg/m? kg m-3
Pressure....... .. newton per square meter Pa kgm's*=Nm?
Angular velocity .. radian per second rad/s s =rad s
Angular acceleration. . radian per second squared rad/s*  s?=rad s7*
- Luminance........... . candela per square meter cd/m? cd m™*
Luminous flux . lumen Im ed=cd sr
Illumination Ix cd m™*=cd sr m™
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1.2. Universal Physical Constants. Physical constants in Table 1.5 are evaluated on the
basis of SI units, but the vaiues indicated are based on National Bureau of Standards

. 1969 realizations of the SI units.

TABLE 1.5 Universal Physical Constants

Name of constant

Symbol

Value

‘Remarks

Speed of propagation of
electromagnetic waves in
VACUUM .evvervrercrnneeeniesnnannnans

Permeability of vacuum ....

Permittivity of vacuum.............. €
Impedance of vacuum............... Z,

Photon charge.........ccoeenns
Photon rest mass..............
Photon magnetic moment.. "
Electron charge......cc...ooevvvunnnnn

Electron rest mass........ceoeeeees o m,
Electron Compton wavelength... A,
Electron classical radius
Electron magnetic moment........ ™

Proton charge.......
Proton rest mass

Proton Compton wavelength...... Acsp
Proton radius ........ Jrorerenieannrnans r,

Proton magnetic moment... . By
Neutron charge .....coccccconeeieenien Gn
Neutron rest mass.....ccceceeveinennne m,
Neutron Compton wavelength... Ac,m
Neutron radius........cooovvemierinnnne I
Neutron magnetic moment T
Atomic mass unit.............. . B

Avogadro constant ...

Faraday constant..... . F
Planck constant.......o..cceevvueenns h
Angular Planck constant............ &
Boltzmann constant ...........c...et k

Gas constant..............
Rydberg constant

Electron charge/mass ratio......... —ge/m,

Magnetic flux quantum ............. P,

Quantum of circulation ............. h/2m,

Bohr radius............:
Bohr magpeton........

Nuclear magneton ........... e Ry
Stefan-Boltzmann constant......... o

First radiation constant ............. o
Second radiation constant.......... C

2.99792458(1.2) X 10* m/s
47 X 1077 kg m A2 572,
(or H/m) '
8.85418782(7) X 10712 A? ¢
. kg™ m™3 (or F/m)
376.73031(2) kg m* A2 s7?
(or V/A)
0
0
0 .
-1.6021892(46) X 102 A s
(or C)
9.109534(47) X 10~ kg
2.4263089(40) X 10~* m
2.8179380(70) X 10-* m

. 9.284832(36) x 107 A m?

—qe .
1.6726485(86) x 107" kg

1.3214099(22) X 107* m
~3 X 107* m .
1.4106171(55) x 107 A m*

0
1.6749543(86) X 10~ kg
1.31959809(22) X 10~5 m
~3x 1075 m
—9.66322(10) X 107" A m?
1.6605518(17) X 107 kg

6.0220943(63) x 10** mole™
9.648456(27) x 107 C mole?

6.626176(36) X 10~ kg m?
s (or]s)

1.0545887(57) X 107> kg m*

s7' (or J s) -
1.380662(44) X 102 kg m?

K™ s72 (or J/K)
8.31441(26) ] K™* mole™*
1.097373177(83) X 10’ m™!

1.7588047(49) X 10" A's kg™
2.0678506(54) X 10~'* kg m?

A's?(orVs)
3.6369455(60) X 10~* m* s™!
5.2917706(44) X 10~ m

.9.274078(36) x 107 A m*

5.050824(20) X 107 A m®

5.67032(71) x 10~* kg s K™*

(or W/m? K*}
3.741832(20) x 107" kg m*

573 (or Wm?) :
1.438786(45) X 10 K m

NBS 1974 value
Note 2

€= (Mei)_l =~ 107*%/367
(Notes 1, 3)
Zy = (poley)'*

Notes 1, 4

Note 1

Ae = h/m.c, (Note 1)

e = ql4me,mecy® (Note 1)

toel g = 1.0011596567(35)
(Note 1)

m,/m, = 1836.15152(70)
(Note 1)
Aew = himyc, (Note 1)

popl ity = 1.521032209(16)
X 1072 (Note 1)

my/m, = 1838.68 (Note 1)
Acom= h/m.c, {Note 1)

Hafiey =—1.91315

= 107%N, NBS 1974 value
N, =10"%u NBS 1974 value

F=—qN, (Note 1) .
Note 1

# = h/27 (Note 1)
k=R/N, (Note 1)

R = kN, (Note 1)

R. = m.q.* 8¢ ch’
(Note 1)

Note 1

®, = —h/2q. (Note 1)

8, = ht/am.q (Note 1)
pp = —Rq./2m, (Note 1)
un = —Pq/2m; (Note 1)
o = w*kA/60h%cs (Note 1)

¢, = 2mhc,* (Note 1)
¢y = hek
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TABLE 1.5 Universal Physical Constants (continued) -

Name of constant . . Symbol > Value Remarks
Molar volume of ideal gas ..... ¥m 22.41383(70) m* mole™’ Nobte 1
at 273.15 K and 1.01325
X 10* N m™ . :
Gravitational constant ............... G 5,6720(41) X 10" m*kg~'s~* Note 1.
Standard acceleration of free
fallooioieeeriiei e &n 9.80665 m s~2 Note 5

[ . N .
Note 1. These values are from E. Richard Cohen and B. N. Taylor, The 1973 Least-Square Ad-
justment of the Fundam | Constants, J. Phy. Chem. Ref. Data, vol. 2, no. 4, pp. 663~734, 1973.
The numbers in parentheses are the standard deviation uncertainties in the last digits of the’
quoted value on the basis of internal consistency. See also Nat. Bur. Stand. (U.S.) Tech. News
Bull,, vol. 47, no. 10, p. 175, October 1963; also B. N. Taylor et al., “The Fundamental Constants
and Quantum Electrodynamics,” Academic Press, Inc., New York, 1969.

Note 2. ANSI Y10.5-1968 indicates I'n as the symbol instead of y, and refers to it as a magnetic
constant.

Note 3. ANSI Y10.5-1968 indicates I', as the symbol instead of €, and refers to it as an electric
constant.

Note 4. ANSI Y10.5-1968 indicates e as the symbol instead of g., and refers to it as an elementary
charge. .
Note 5. This value is as defined by the Conférence Générale des Poids et Mesures (CGPM) in
1901. '

v 1.3. Definition of Mathematical Symbols

TABLE 1.6 General Algebra °

) = Circumference/diameter ratio = 3.141592654 . . .
2) e Natural base = 2.718281828 . . .
3)j Quadrature (90°. rotative) operator = V=1, j# =1, j°=
—V-1, = "
4)a 120° rotative operator = ™
(5) x, y, z, %y, Wi, Zi Real variables .
(6) w=u+jv; s= 0+ jo; y=a+j8 Complex variables
(N w*=u—jv Conjugate complex variable
(8) z=Re z + Im z =|z|e® Phasor variable
(9) |zl = Magz Magnitude (absolute value) variable
(10) ¢ = Arg z="tan™! %—Evf Argument variable
(11) Re z Real part of z. Re (a + jB) =«
(12) Imz Imaginary (quadrature) part of z. Im (a + jB) = 8
(13) = Identically equals (by definition)
(14) = Equals
(15) =~ Approximately equals
(16) = Equals in the limit
(17 ~ Proportional to; varies as
(18) = Does not equal
(19) — Approaches
(20) > Implies
21 = Greater than or equal to
(22) = Less than or equal to
(23) > Greater than (perhaps-1 to 10 times)
(24) < Less than (perhaps 1 to 0.1 times)
(25) » Much greater than (perhaps more than 10 times)
(26) < Much less than (perhaps less than 0.1 times)
7 +,—~ Algebraic addition or subtraction
(28) =, % Plus or minus; minus or plus
(29) x, + Algebraic multiplication or division

(30)_ 2“ a=a+a,+a;+---+a, Summation
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TABLE 1.6 General Algebra (continued)

@1) n 4= 0100y . . . 0,

" Product,

(32) nl=n{n—1)n—2)---3x2x1 Factorial of n (an integer)

(33) (a,b)

(34) [a,b]

(35) (a,b]; [a,b)
(36) f(x)

(37) f(x)la

(38) Li_!j:f(x)
(39) In'x’

(40) log x

(41) log, x

(42) 2.71
(43) 2.13842
(44) 8.9625 . . .

- Open interval extending from a to b
Closed interval including a and b end points
Half-closed interval including b or a end poiat
Function of x :
Function difference = f(b) — f(a)

Limit of f(z) as x approaches a

Natural logarithm of 2. Logarithm to, the base ¢

Common logarithm of x. Logarithm to the base 10

Logarithm of x to the base (radix) r. Log, x=log, x
log,, 2 -

Repeated 7 integer

Repeated 3842 sequence of integers

Continuation of integers (continuing fraction)

TABLE 1.7 Caleulus

(1) 3

2) 3
3 v

(4) €
(5) &
(6) d

(7) a,
(8) didx
(9) 8/ax
(10) d"/dx"
(11) a*/ax"
(12) A

a3 |
a4 [
as) [
as) [

o Jf [[f.f

There exists

Such that

For all

Belongs to

Does not belong to

Total differential operator

Partial differential operator with respect to x

Total derivative with respect to x operator

Partial derivative with respect to x operator

Total nth-order derivative with respect to x operator
Partial nth-order derivative with respect to x operator
Increment operator

Indefinite integration opera!;)r. f df(x) = f(x)
Partial integmﬁon operator. J; 3.f(x,y) = flx,y)
Definite integration operator. f: df (x) = f(b) — f(a)
Line integral along a §peciﬁed curve

Line integral around a closed curve

Area integral over a specified surface

Area integral over a closed surface

Volume integral throughout a specified volume

Second-, third-, and nth-order successive indefinite in-
tegration operators
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TABLE 1.8 Vector Analysis

ik
@ x,y,2
3 p oz
4) p, ¢v‘z
®1dé
©6)r,0,¢
ma

@8) t

@©) -
(10) x
an v

(12) v -
(13) Vv x
(14) 9. v =92
1

M
(15) U’=§5?,' =

Unit x, y, and z vectors (nondimensional)
Cartesian coordinates

Unit p, ¢é. and z vectors (nondimensional)
Cylindrical coordinates -

Unit r, 8, and ¢ vectors (nondimensional)
Spherical coordinates

Unit vector normal to a surface (nondimensional)
Unit vector tangent to a surface (nondimensional)
Scalay product (dot product, inner product)
Vector product {cross product, outer product)
Gradient operator

Divergence operator

Curl operator

Laplacian operator

¥* D’Alembertian operator

TABLE 1.9 Matrix Algebro

(1) {a} = (a)
2) (a)={a}"
(3) [ag)

(@) {ay]’ = [ay]
5) lag* =laf)
(6) [ay]t = [af)"
(7) Uy= 8,
(8) 0y
©) (ay]™*
(10) adj [a,}
111) det [a,) = |ay)
(12) cof [a,) .
(13) tray)
(14) {ayXby)

A8) (- (b0) =3 a?b

(16) flad= ({a}, (a))?
(17) [a,] ® [by)

- (18) (]
(19) {H{

Column matrix

Row matrix

Matrix with element g, situated in the ith row and in the jth
column

Transpose matrix

Conjugate matrix

Hermitian conjugate (tranjugate) matrix

1dentity matrix of order n

Null matrix

Inverse matrix of (a,]

Adjoint matrix of {a,)

Determinant of [a,)

Cofactor of [ay)

Trace of [ay]

Matrix multiplication. Note that columns of [a,) must equal ’
the rows of (by]

Scalar (inner) product of column matrix {a,} and row matrix
by

Euclidean (Frobenius) norm

Direct (outer) product of [a,] and [by] matrices

Jacobian (functional) determinant

Hessian determinant’

TABLE 1.10 Logic and Boolean Algebra

®
Z
=

_ ais contained in set A.

Lagical multiplication. Intersection of set A and set B
‘A AND B.

Logical addition. Umon of set A and set B. A OR B.
Exclusive OR.

Logical tnclusion. Inclusion of set B in set A.

Complement of set B in set A.

Logical complementation. NOT set A. Negation.
Logical impossibility. Empty (null) set. Zero state.
Logical certainty. Universal set. One state.
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TABLE 1.11 Statistics ond Probobility

(1) p(x) = dP(x)dx Differential probability (density) function of random variable x.

Univariate frequency function

Cumulative probability function of random variable x. Uni-

(@) Plx) = [. p(x) dx’ variate distribution function

(3) PIA < x < B) Cumulative probability that x is between A and B .
4) ENF) Probability of simultaneous (joint) occurrence of E-and F
(5) P(E U F) Probability of occurrence of E or F or both

(6) PEIF)= P(E N F)/P(F) Conditional probability. Probability of occurrence of E .pro-

vided F has occurred

™ BLfw)= [ fiata) ds
(8) E(x) =% =J'_. xp(x) dx

9 a, = E(x")
(10) p, = E(x — %)

Expected value of function of a random variable x
Expected (lﬁean) value of random variable x

rth moment of random variable x. rth moment about the origin

rth moment of random variable x from mean value. rth central

. moment

(11) Var x= E{(x — £}] = (x — 2
=x-7

(12) o = (Var x)'*

(13) M. (s)= E(e*)’

(14) ¥:(q) = E(e**)

(15) y,(q) = E[¢'*]

(16) plx,y) = d*P(x,y)idx dy

Variance value of random variable x

Standard deviation of random variable x

Moment generating function associated with random variable x

Characteristic function associated with randam variable x

Characteristic function of g{x) with random variable z -

Differential probability (density) function of random vanables x
and y. Bivariate frequency function

_ g . w 3.e..» Cumulative probability function of random variables x and y.
an IP(x,y)—f' j pixy')dx'dy Bivariate distribution fnncﬁon

Cumulative probability that z is between A and B and that also
y is between C and D. Cumulative joint probability

"(18) PLA<x< B,C<y< D)

(19) Cov (x.y) = E[(x — £)(y — §)]
=G-9y—9
(20) p(xy)= Cov (xy)lo .0,

Covariance value of random variables x and y
Correlation eoefficient of random variables x and y

TABLE 1.12 Functions, Transforms, and Miscellaneous

Exponential function of z

{1) expz=¢*

2) In x=J'x£i“2 Logarithmofitothebasee
. o

(3) log x Logarithm of x to the base 10

(4) sin x, sin"! x
(5) cos x, cos™ x
(6) sec x, sec™!

Dirget and inverse sine operation on x
Direct and inverse cosine operation on x
Direct and inverse secant operationon x .

(7) csc x,csc™ x

(8) tan x, tan™' x

(9) cotx, cot™’ x
(10) sinh z, sinh™" x
(11) cosh x, cosh™! x
(12) sech x, sech™' x
(13) cschx, esch™' x
(14) tanh z, tanh~! x
(15) coth 1, coth™t x

, T e
(16) E|x=f = du
e U

(7 Siz= J"“':“d :

18) cu-J’_%du»

Direct and inverse cosecant operation on x

Direct and inverse tangent operation on x

Direct and inverse cotangent operation on x

Direct and inverse hyperbolic sine operation on x
Direct and inverse hyperbolic.cosine operation on x
Direct and inverse hyperbolic secant operation on x
Direct and inverse hyperbolic cosecant operation on x
Direct and inverse hyperbolic tangent operation on x
Direct and inverse hyperbolic cotangent operation on x

Exponential integral. x > 0
Sine integral

Cosine integral
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TABLE 1.12 Functions, .Tmmfon'n.s, cnd Miscellaneous (continved)

(19) sm:-f%ﬁau

(20) Chix= J' cosh ¢ gy

@1) [z) = f: wte du

41T
(22) ¥(z) = _._4(‘;_)

(23) IN(zx) = J. u* et du
(24) erfz = 2 r e“"" du
Va lo

l(25) erfc z= %J‘: e du
(26) C(z) = L * cos (—’2-7- u’) du
(@7) Sz)= f: bin (5 ) du

) e =
(29) P,(z)
(30) P,*(z)

(31) Q4(z)

(32) J,(=) ‘
(33} Y,(2) = N\(2)

'(34) Hz), H9(a)

(35) 1(2)

(36) K,(z)

(37 ber, x+ 4 bei, x
(38) ker, x + j kei, x
(39) Aiz

(40) Biz

(41) H,(z)

(42) M(a,b,z}

(43) U(a,bz)

(44) F(a,b,cz)

(45) Fy(n.p)

(46) G.(n.p)

(40 snu,cnu, dnu
(48) cdu, sdu, nd u
(49) de u, ncu, scu
(50) nsu,ds «, cs u
(51) Flpla)

(52) E(gla)

(53) ce,(z.q), se(z.q)
(54) Ty(x)

(55) Ua(x)

(56) La(x)

(57) Hy(x)

(58) B(x)

(58) Ex(x)

(60) {(s) = ;: ke

1 dezt—1)»

Hyperboli;:ﬁsiné integral

Hyperbolic cosine integral

Gamma (factorial) function. Re z > 0
Polygamma function. Rez>0,n=1,2, 3.' e

Incomplete garhma function. Re z > 0

Etror function
Complementary error function
Fresnelb cosine integral
Fresnal sine integral

Legendre polynomial of first kind and integer degree n

Legendre function of first kind and degree »

Associated Legendde function of first kind of degree » and
order u

Associated Legendre function of second kmd of degree »
and order u

Béssel' f\mchbn of first kind and order v

‘Béssel function of second kind and order v. Weber's func-

tion
Bessel functions of third kmd and order ». Hankel func-
tions

.Modified Bessel function of first kind and order v
- Modified Bessel function of second kind and order »

Kelvin function of order »

Modified Kelvin function of order »

Airy function of first kind

Airy function of second kind

Struve function of order »

Regular confluent hypergedmetri¢ (Kummer) function

Irregular (logarithmic) confluent hypergeometric (Kummer)
function

Hypergeometric function

Regular Coulomb wave function

Irregular (logarithmic) Coulomb wave function

Jacobi elliptic functions with pole on the imaginary axis

Jacobi elliptic functions with complex pole

Jacobi elliptic functions with pole on the real axis

Jacobi elliptic functions with pole at the origin

Incomplete elliptic integral of the first kind

Incomplete elliptic integral of the second kind

Even and odd Mathieu functions of order r

Chebyshev polynomial of the first kind of degree n

Chebyshev polynomial of the second kind of degree n

Laguerre polynomial of degree n

Hermite polynomial of degree n

Bernoulli polynomial of degree n

Euler polynomial of degree n

Riemann zeta function. Re s > 1
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TABLE 1.12 Functions, Transforms, and Miscellaneous (continued)

61) Py = Py" = n! Permutations of n different elements in groups of k with
(61) wPy = Py (n—k)! recognition of order .
62) Cr=Cpr=N =" ! . Combinations of n different elements in groups of k with-
) ETE T e T ki (n — k) out recognition of order. Bjnomial coefficient
N .

(63) 8(x) = 1“,1,., _e__;__ Impulse (Dirac) function

, 0 x <0
(64) Ulx) =I 8(x')dx’ ={Y2 x=0 Unit step function

by 1 x>0
(65) Sgn x=2U(x)— 1 . ’:Signum function
(66) Gy(x) ={ (l) : {:: i ‘;((g Gate function’
(67) by(x)= i 8(x — nX) Dirac comb fu?ction. Equispaced impulse function
(68) Strx= I B Sx(x) dx Unit staircase function
(69) Sax= 5—'—2-5 Sampling function
(70) #, ! Direct and inverse Fourier transform operations
(71) #., F. Direct and inverse Fourier cosine transform operations
(72) &#,, F,°! Direct and inverse Fourier sine transform operations
(73) &, 2! ) Direct and inverse Laplace transform operations
(74) 4, K" Direct and inverse Mellin transform operations
(75) #, 2, Direct and inverse Hankel transform operations
(76) &, ¥ Direct and inverse Hilbert transform operations
(77 =z, 2 Direct and inverse 2z transfom@ operations

1.4. Mathematical Formulas and Data

1.4a. Real Number Systems. A real number system can be- devised using two or mére
counting symbols. The base of the number system is the number of different symbols
used and is called the radix r of the number system: for example, radix = 10 for our
familiar decimal number system. The r different synibols are associated with values
from 0 to r — 1: for example, 0 to 9 in the decimal number system. The r symbols g,
(i=0,1,2,..., r—1) are ranked in integer increasing value.

TABLE 1.13 Names of Number Sysnm

Base Base .
(radix) Name (radix) Name
2 Binary 8 Octal
3 Ternary 9 Nonary
4 Quaternary : 10 Decimal
5 Quinary ) 11 Undenary
6 Senary 12 Duodenary
7 Septenary 16 Hexadecimal

Any positive real number of value x can be uniquely represented in the number sys-
tem radix r by writing a row of m + k symbols, with each of the m + k’symbols 'being
one of the r different symbols. These symbols are ordered in the row from the right
(least significant symbol) to the left (most significant symbol). The column positions
of the m + k symbols are numbered from right and left of a dot called the radix point.
(1) t=(Gn Om-1 *°° G @ G* Gy Gy - Q)

The value of this number radix r is
(2) x=0u™+ Guar™ '+ -+ a+ayr +a+a ! 1o

ta it tat=3Y ar
1=k
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It is generally convenient to use the r symbols of number system radix r to be iden-
_ tically the same as the ranked symbols of the decimal number system. Number desig-
nations in several different number systems are illustrated in Table 1.14.

Negative numbers can be accommodated by introducing two sign symbols + and —
placed before the most significant symbol. The radix point can be moved about as
desired (floating point) by factoring out a power of r. Thus for r = 2, m + k = 6, radix
point just to the left of the most significant symbol, first symbol to indicate sign, and
last two symbols to indicate the radix power, the number (110110111), would be
—0.101101, x 2% =—101.101, = —5.625,,.

TABIE 1.14 Number Designutiens in Different Number

Systerms
N; N, N, N N, Ny
0. 0. 0. 0. 0 0.
1. 1. 1. 1. 1 1.
10. 2. 2. 2. 2 2.
11 10. 3. 3. 3 3.
100. 11 10. 4. 4 4.
101. 12. 11. 5. S 5.
110. 20. 12, 10. 6 6.
111, 21. 13. 11. 7 7.
1000. 22. 20. 12. 10 8.
1001. 100. 21. 13. 11. 9.
1010. 101 22, 14. 12. 10.
1011. 102. 23. 15. 13 1L
1100. 110, 30. 20. 14 12.
1101. 111, 31 21. 15 13.
1110. 112, 32. 22. 16 14.
1111. 120. 33. 23. 17 15.
* 10000. 121 100. 24. 20. 16.
10001. 122. 101. 25. 21. 17.
10010. 200. 102. 30. 22. 18.
10011. 201. . 103. 31 23. 19.
10100. 202. 110 32. 24, 20.

Occasionally for a variety of reasons it is necessary to encode the number as written
in lt’he original number system. A few different encoding schemes are illustrated in
Table 1.15.

TABLE 1.15 lliustrative Encoding Schemes

Ny N, (Nz)ene. Code name Encoding rules
415 N; = 637 141 Radix complement Replace each column symbol by
=gt N, (radix —1) complement, and
e add 1 to the final number.
13 Ny = 1101 1011 Reflected binary Column symbol is 1 if corre-
(gray) sponding column symbol +

symbol to left is 1. Other-
wise it is zero.

13 N: = 1101 10000 Excess 3 Add binary 3 to N,
13 N; = 1101 11000 Reflected binary, Excess 3 + reflected binary
excess 3 codes.
659 Nie = 659 g}‘l,? g::;‘:s } Encodg each symbol as a binary
1001 Decimal pumber. .
415 N, =637 110 . . Encode each symbol of N, as a
011 Binary binary number
11 Coded Octil :




