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Preface

This compilation, which is designed primarily as a reference book for.
research scientists, is concerned with radiative and collisional processes
involving atoms or molecules. It provides surveys covering the following
topics: forbidden and allowed lines and bands, photoionization, photo-
detachment: recombination, attachment; elastic and inelastic scattering
of electrons, energy loss by slow electrons; collision broadening of
spectral features; encounters between atomic systems including range,
energy loss, excitation, ionization, detachment, charge transfer, elastic
scattering, mobility, diffusion, relaxation in gases, and chemical reactions.
A chapter is devoted to the use of high temperature shock waves and
accounts are given of the other main experimental methods. The relevant
theoretical work is also described, detailed mathematics being avoided
as far as possible. :

The main emphasis is placed on the developments which have taken
place in the past decade, that is, since the publication of the first edition
of the great treatise by Massey and Burhop Electronic and Ionic Impact
Phenomena. These developments were stimulated by the growth of
interest in such fields as space science, astrophysics, and plasma physics.
They were rendered possible by remarkable technical advances which
have benefited directly not only expenmentallsts but also (through fast
digital computing) theorists.

Thanks must be given to the staff of the Academic Press for their
determined efforts to ensure that a thick volume reviewing work done up
to almost the end of 1961 should appear early in 1962.

D.R.B.
Department of Applied Mathematics
The Queen’s University of Belfast
Belfast, Northern Ireland

February 1962
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1 Introduction

1.1 DiscovEry aND IMPORTANCE
OF FORBIDDEN TRANSITIONS

Early in the history of spectroscopy empirical rules were developed
to enable the prediction of spectral lines to be accomplished from the
energy levels of the atoms. These rules became known as selection

1



2 R. H. GARSTANG

rules; they enabled one to select, from all the possible transitions
between pairs of energy levels, those which might be expected to be
observable. These selection rules were subsequently justified by quantum
mechanics. As the subject progressed some lines were discovered which
violated the selection rules, and such lines became known as forbidden
lines. The first forbidden transitions to be recognized as such were the
*D) — 28 transitions in the alkali metals, observed by Datta in 1922.
Other lines observed in the laboratory were the 6*P, — 615, line of
mercury (Rayleigh, 1927), the mercury line 63P, — 615, by Fukuda
(1926), and the auroral line 2p% 1S, — 2p* 1D, of oxygen (McLennan
and Shrum, 1925). The study of forbidden lines received its greatest
stimulus when Bowen (1928) identified many of the strongest lines in
the spectra of gaseous nebulae as being due to forbidden transitions in
OII, OIll, and N II. Many more forbidden lines were discovered
subsequently in celestial objects, and a few were produced in laberatory
sources. The appearance of the forbidden lines in celestial objects
indicates the presence of unusual physical conditions, particularly low
densities, when the frequency of collisional de-excitation of atomic
levels is much reduced, and radiative de-excitation by forbidden transi-
tions becomes important. Observations of forbidden lines are thus' of
importance in astrophysics because of the information which they can
yield on the conditions in their source. A number of forbidden transi-
tions were found in molecular spectra from about 1930 onwards. Van
Vleck (1934) established the nature of the atmospheric absorption bands
of oxygen, Vegard and Kaplan studied forbidden bands in N,, and others.
were identified. The occurrence of such bands in the telluric spectrum
has led to much of the interest in their study.

1.2 TERMINOLOGY

A number of definitions of forbidden transitions have been proposed.
‘The traditional definition divides spectrum lines into two groups, those
which satisty all the selection rules are termed permitted lines, all the
others are called forbidden lines. This definition is not entirely adequaste,
for many of the selection rules are only approximate, and the strengths
of the forbidden lines vary greatly with atomic number for atoms of the
same electronic structure. An alternative definition calls lines forbidden
if the probability of their occurrence is very small compared with the
probability of the strongest transitions between levels of similar total’
quantum numbers (Mrozowski, 1944). Other authors refer to those
lines which are due to magnetic dipole or electric quadrupole radiation



|. FORBIDDEN TRANSITIONS 3

as multipole radiation (Rubinowicz, 1949). Notwithstanding these
definitions, a practical terminology has arisen which is described below
and used 1in this chapter.

In atomic spectroscopy, all transitions which violate the rigorous
selection rules for electric dipole radiation in free atoms are termed
forbidden transitions. This category includes all magnetic dipole and
electric quadrupole transiticus, two-quantum processes, electric dipole
radiation enforced by perturbations external to the atom, and electric
dipole radiation caused by the atomic nucleus. Electric dipole transitions
which violate only certain approximate selection rules (e.g., 4s? 1S, —
4s4p 3P; in Cal, which violates the rule 45 = Q) are not called for-
bidden transitions.

In molecular spectroscopy all transitions which violate any selection
rules, whether rigorous or not, are called forbidden. Thus, intercombina-
tions (e.g., /T — 1X) are included among forbidden molecular transi-
tions. In polyatomic molecules transitions made possible by vibronic
interactions are also included among forbidden transitions.

In atomic spectroscopy forbidden lines are denoted by square brackets,
e.g., the auroral line is described as occurring in the spectrum of [O I].

2 Forbidden Lines in Atomic Spectra

2.1 INTRODUCTION

In accordance with the terminology discussed earlier, all transitions
which violate the rigorous selection rules for electric dipole radiation
in free atoms are termed forbidden transitions. The selection rules for
electric dipole, magnetic dipole, and electric quadrupole radiation are
listed in Table I. The notation used is the standard one: L, S, and J
are, respectively, the orbital, spin, and total angular momenta of the
atomic electrons, M is the magnetic quantum number (component of J)
and n is the principal quantum number, The parity is (— 1)*! where I
is the azimuthal quantum number of the ith electron. The selection
rules (1), (2), and (3) are rigorous in the absence of nuclear perturbations
z'md two-quantum processes. Rule (4) holds only when configuration
Interaction is negligible, and rules (5) and (6) hold only for LS-coupling.
Forbidden lines may arise from several causes.

(a) The rigorous selection rules, (1)-(3), may be violated for electric
dipole radiation, but allowed for magnetic dipole or electric
quadrupole radiation.



4 R. H. GARSTANG

TABLE 1

SELECTION RULES IN ATOMIC SPECTRA

Llectric dipole Magnetic dipole Electric quadrupole
(1) 4] - 0, &1 4] =0, +1 , 47 =0, £ 1, + 2
(0> 0 (0«0 (040, lp++> 14, 0e>1)
(2) 4M == 0, 4 | AM =0, + 1 AM =0,+1, +2
{3) Parity change No parity change No parity change
{4) One clectron jump No electron jump One or no electron jump
al = 41 Al = 0 Al =0, +2
4n = 0
(5) 45 = 0 45 =0 458 =0
(6) AL = 0, + 1 4ar. = 0 AL =0, + 1, + 2
(0 +—+0) (0 >0, 0+ })

(b) The approximate selection rules, (4)-(6), may be violated.
{¢) The atoms may be subject to external perturbations.

(d) Nuclear perturbations may be appreciable.

(e) A two-quantum process may take place.

Lines produced by (b) above [without (a), (c), (d), or (e)] are not usually
termed “forbidden’ (see § 1.2).

We shall discuss first the general theory of magnetic dipole and electric
quadrupole radiation, then consider calculations and observations on
individual atoms, and finally discuss the remaining types of forbidden
transitions. Review articles on these subjects have been published by
Borisoglebskii (1958), Rubinowicz (1949), and Mrozowski (1944).

2.2 THeORY OoF MacNETIC DIPOLE AND
ELECTRIC QUADRUPOLE RADIATION

‘The basic theory of magnetic dipole and electric quadrupole radiation
was given by Condon and Shortley (1951). They gave the formulae for
transition probabilities in terms of the matrix elements of the magnetic
dipole and electric quadrupole moments, and quoted the formulae of
Rubinowicz for the relative strengths of the Zeeman components of a
line and of the lines of a multiplet in quadrupole radiation. The theory
was extended by Shortley (1940), who showed how many of the general
methods used for electric dipole intensity calculations could be extended
to the electric quadrupole case. In particular, Shortley showed how to
perform calculations for the intermediate coupling conditions which are



