

FIFTH GENERATION
COMPUTER ARCHITECTURES

Proceedings of the IFIP TC 10 Working Conference on
Fifth Generation Computer Architectures
Manchester, U.K., 15-18 July, 1985

edited by

J.V.WOODS

University of Manchester
UK.

(II’\%}“_{C
(17

1986

NORTH-HOLLAND
AMSTERDAM - NEW YORK - OXFORD - TOKYO

®{FIP, 1986

Alirights reserved. No part of this publication may be reproduced, stored ir aretrieval
system, or transmitted, in any form or by any means, electronic, mechanical photocopying,
recording or otherwise, without the prior permission of the copyright owner.

ISBN: 0444879870

Published by:

ELSEVIER SCIENCE PUBLISHERS BV.
P.O. Box 1991

1000 BZ Amsterdam

The Netherlands

Sofe distributors forthe U.S.A. and Canada:

ELSEVIER SCIENCE PUBLISHING COMPANY, INC.
52 Vanderbilt Avenue

New York, N.Y. 10017

U.S.A.

Library of Congress Cataloging-in-Publication Data -
IFIP TC 10 Working Conference on Fifth Generation
Computer Architectures (1985 : Manchester, Greater
Manchester)
Fifth generation computer architectures.

1. Computer architecture--Congresses. 2. Electronic
digital computers-~Congresses.” I. Woods, J. V.
(John Vivian), 1939- . II. IFIP TC-10. III. Title.
QATE.9.AT3I36 1985 00k,2'2 86-LhL43
ISBN 0-L44-87987-0

PRINTED IN THE NETHERLANDS

FOREWORD

This book contains a collection of the papers that were presented at the
Working Conference on Fifth Generation Computer Architectures held at the
University of Manchester Institute for Science and Technology from July
15th to 18th, 1985, The Conference was sponsored by Technical Committee
. TC-10 of the International Federation for Information Processing (IFIP).

The aim of the Working Conference was to draw together 50 or so of the
world’s leading resecachers in the area of novel computer architecture so that
they could present ongoing work and disseminate their recent results. The
following arcas were thought to be of interest: architectures for functional
and logic programming, parallel dataflow and reduction machines, inference
architectures and human-machine interfaces. Both formal and informal
submissions. were sought, the latter being progress reports on projects of
general interest. The Programme Committece invited three speakers to give
keynote talks and selected 15 of the 51 submitted papers for formal
presentation. A number of informal presentations were also selected.
Authors were invited to prepare written versions of their papers which
would be considered for publication in the Proceedings. Referees’ comments
were sought and the resultant changes included. . :

The Programme Committee felt that the main objective of the Working
Conference had been achieved in that many leading researchers attended and.
disseminated their latest work. The discussion sessions were particuarly
lively and informative. There was an interesting mix of the famous and
the less well-known which added an extra dimension to the event. All in
all the Conference was another testimony to the benefit of thc mtcmauonal
collaboranon that is fostered by IFIP. .

Of course, these events always rely on the hard work of the few altruistic
persons who can turn such an idea into a reality. We would like to offer
our sincere thanks to everyone who assisted in making ‘the Working
Conference a success: firstly to our late Conference Chairman, Professor
Tohru Moto-oka; secondly to the Chairman of IFIP TC-10, who was also our
Chairman of Local Affairs, Professor David Aspinall; thirdly to our,
Procecdings Editor and Conference Secrctary, Dr. Viv Woods; and finally to
the Members of the Programmc Committee and all the local helpers who
contributed to the smooth running of the conference.

Professor Tohru Moto-oka -

It is a matter of great sadness that these Proceedings must open- by
reporting that the Conference Chairman, Professor - Moto-oka, of the
University of Tokyo, died on the 1ith November, 1985. Professor Moto-oka
was renowned throughout the world for his leading role in the Japenese
Fifth Generation Computer Systems Project and he was a key member of
IFIP TC-10. His achievements already attest to his stature, but it is
particularly sad that he will not be able to sce the final fruits of his
endeavours in the above arecas. He will be greatly missed. '

Hideo Aiso and John Gurd
Programme Committee Chairman and D?)uty

vii

TABLE OF CONTENTS

A) LOGIC PROGRAMMING ARCHITECTURES

Y. Sohma, K. Satoh, K. Kumon, H. Masuzawa} A. Itashiki 3
"A New Parallel Inference Mechanism Based on Sequential
Processing."”

H. Diel
"Parallel Logic Programming Based on an Extended Machine 15
Architecture”

0. Shmueli, H. Zfira, R. Ever-Hadani and S. Tsur 31
"Dynamic Rule Support in Prolog."

S. J. Stolfo, D. M. Miranker and R. C. Mills 55
"A Simple Preprocessing Scheme to Extract and Balance
Impllcit Parallelism in the Concurrent Match of Production
Rules.

S. Shibayama, K. Iwata and H. Sakai 67
"A Knowledge Base Architecture and its Experimental
Hardware. ¢

A. Ciepielewski, B. Hausman and S. Haridi 81
"Initial Evaluation of a Virtual Machine for Or-Parallel
Execution of Logic Programs."

B) DATA-FLOW ARCHITECTURES

Arvind and D. E. Culler 103
"Managing Resources in a Parallel Machine."”

N. Ito, M. Kishi, E. Kuno and K. Rokusawa 123
"The Dataflow-Based Parallel Inference Machine to Support
Two Basic Languages in KL1." A

147

H. Sunahara and M. Tokoro
"On the Working Set Concept for Dataflow Machines: Policies

and Their Evaluation."

viii Table of Contents
€) FUNCTIONAL PROGRAMMING ARCHITECTURES

K. Berkling
vEpsilon-Reduction: Another View of Unification."

E. A. Ashcroft and R. Jagannathan
"Operator Nets."

1. Watsdn, P. Watson, V. Woods
"Parallel Data Driven Graph Reduction."

D. A. Plaisted
"An Architecture for Functional Programming and Term

Rewriting."”

K. Toda, Y. Yamaguchi, Y. Uchibori and T. Yuba
"Prelminary Measurements of the ETL LISP-Based Data- Drxven

Machine."

D) FIFTH GENERATION USER INTERFACES

S. Cohen, A. Davis and S. R?.)binson
"The FAIM-1 User Interface - Human Engineering for the Fifth

Generation."

E)WWM

V. E. Kotov, A. G. Marchuk and Yu. L Vishnevsky
"MARS - A Hierarchical Heterogeneous Modular System."

A. V. Kalyayev
*Multiprocessor Systems with a Programmable Architecture."”

A. N. Myamlin, V. K. Smirnov and §. L. Golovkov
"A Specialized Symbol Processsor.”

F) INVITED REPORYS ON ON-COING RESEARCH PROJECTS

J. Beer
“The German Parallel PROLOG Machine Developmenc Project."

163
177 .
203
221

235

257

277
201

301

321

Table of Contents

E. A. M. 0dijk
"The Philips Object-Oriented Parallel Computer”.

B. H. Borovsky and P. I. Ilieva

"A Reconfigurable Highly Parallel Architecture Based on_

Recirculative Network"

Author List

<&

331

343

355

PART A

LOGIC

PROGRANMMING
ARCHITECTURES

Fifth Generation Computer Architectures, J.V. Woods {ed.}
Elsevier Science Publishers B.V. (North-Holland)
© IFiP, 1986

A NEW PARALLEL INFERENCE MECHANISM BASED
ON SEQUENTIAL PROCESSING
Yukio Sohma, Ken Satoh, Kouichi Kumon,
Hideo Masuzawa, Akihiro Itashiki

Artificial Intelligence laboratory
Fujitsu Laboratories Limited
Kawasaki, Japan

We propose a new parallel inference mechanism
which we call the KABU-WAKE method. In this
method, an inference is made by a depth-first
search in a processor element. If there is a
request from another processor, a job is split wup
between PEs for OR parallel inference.

Thus, the overhead in each processor and for com-
munication between processors can be minimized.

Through our experimental system, we found that
the KABU-WAKE method was particularly effective for
applications.with large search trees.

1. INTRODUCTION

This paper discusses 'a new parallel inference method, énd
gives an evaluation of this method using our experimental sys-'
tem.

We have been researching the feasibility of realizing a
high-speed inference machine that uses parallel processing.
We propose a new parallel inference mechanism based on the
idea of sequential inference, but extended further to include
parallel inference. Chapter 2 explains our basic concept for
parallel inference. Chapter 3 explains the features and
operating principles of the KABU-WAKE method. Chapter 4
explains an experimental system dedicated to the KABU-WAKE
method. Chapter 5 summarizes the results of experiments using
this system. .

2. OUR APPROACH TO PARALLEL INFERENCE S

Inference speed can be improved by operating a number of
identical processing elements (PEs) in parallel. “However, the
processing efficiency of each PE is also very important.
Currently, there are already a number of speed-up technigues
for single PE, i.e., sequential inference. Thus, we developed
a parallel inference method based on seguential inference, to
take full advantage of existing technology. - ’

4 Y. Sohma et al.

3. THE KABU-WAKE METHOD

The KABU-WAKE method is one of the parallel inference
mechanisms currently being researched by the Fifth Generation
Computer Project.

3.1 Features
The KABU-WAKE method has the following features:

- Each PE sequentially processes a search tree by a depth-
first search.

- Each PE splits its current tree for OR parallel processing
only when requested by another PE.

?—a PEO

—

“—la:-bl, cl
St PE1

AN ~
?—b1$c1 ?"bZ,CZ ?-b3lc3
AN

a:-b3, ¢3 \
N

“—|bl:-p '& PE2

a:~-b2, ¢2

bl:-q ? -p,cl ?-q,cl ?-r,cl

Fig.1 Basic mechanism of KABU-WAKE

These features have the following advantages:

- Low overhead in each PE
In a PE, processing is the same as for sequential
inference ~-- no special processing is necessary for
parallel inference. Therefore, each PE works at the same
speed as for sequential inference.

- Little communication between PEs
A job is split and passed only when requested by

A New Parallel Inference Mechanism 5

another PE, which reduces the amount of required communi-
cation. In addition, since a job is split near the root
of the search tree, granularity of the job can be made as
big as possible.

- Limited number of OR processes
Since the number of OR processes 1is 1limited to the
number of PEs, there 1is no danger of an unexpected
increase in the number of OR processes.

3.2 Principles of Operation

The operating principles of the .KABU-WAKE method are
explained here with some reference figures. Figure l1l-a is an
example of a data base and inquiry written in Prolog. We will
omit arguments of the predicate to simplify the explanation.
The arrow shows the ordinary flow of sequential inference.
Figure 1-b, shows the operating principles of the KABU-WAKE
method. The part indicated by bold lines shows the processing
of one PE and corresponds to the processing indicated by the
arrow in Figure i-a, which is a sequential inference.

If a job request is made by another PE, the job is split at
the branch closest to the root of the search tree and half is
passed to the requesting PE. If another request comes, the
job is split again at the branch next closest to the root of
the tree and half is passed to the second requesting PE. The
job can be further split up among other PEs.

4., EXPERIMENTAL SYSTEM

We built an experimental parallel inference machine to
test the effectiveness of the KABU-WAKE method quantitatively.
We designed a hardware configuration suitable for our method
and installed the KABU-WAKE interpreter on that hardware.

4.1 System Configuration

Figure 2 shows the hardware configuration. The system con-
sists of 16 PEs one of which is used for I/O. PEs are con-
nected by two kinds of exclusive networks.

The system components are as follows:

- PE:

This is a processing element in which a parallel infer-
ence interpreter based on the KABU-WAKE method is
installed. If a PE receives a request from another PE
during inference, the PE splits 1its current job and
passes half to the other PE.

Each PE has a copy of the entire data base.

- CONT network:

This is a communication route for reguesting a job. PE
status information, whether a PE is processing, is circu-
lated on this network. A PE which is performing an
inference can check the status information to give a free

PE a part of its job.

Y. Sohma et al.

- DATA network: D A
This is a communication route for transferring a split

job.

DATA-

NETWORK

CONT-NETWORK

Fig.2 System Configuration of

Experimental machine.

4.2 Implementation
The following points must be implemented in the systenm:

(1) Unbinding of variables

When a search tree is split, the status of the vari-
ables in the split tree must be as if all the processes
located left below of the split position in the search
tree had failed and backtracked, i.e., unbinding.

To speed up this unbinding operation, we reserved an
area for weach variable which memorizes the time it was
bound. Each time a subgoal is made, a new level number,
corresponding to the depth of subgoal, is assigned. For
variables bound during the processing of that subgoal,
the same 1level number as that of the subgoal is tagged.
When a tree is split, we can determine whether binding
should be released by comparing the level of the subgoal

A}

A New Parallel inference Mechanism) 7

to be split with the variable's level number.

In this method, the time required to release variables
for splitting is proportional to the number of variables
in the subgoal to be split. Using a trailing stack is
another alternative, but we think it would take more
time. .

(2) Use of rule numbers

When a tree is split and transferred, it is transferred
in the form of a subgoal. However, since some of the
definitions for that subgoal are already being processed,
the other PEs must start from subsequent definitions.
Therefore, we adopted a method in which a special predi-
cate called a rule number is prepared and attached to the
subgoal before transfer, to indicate where to start exe-
cution.

(3) Control of requests .)
Some jobs cannot be split even when a request is
received from another PE. If this happens frequently, PE
performance will deteriorate. ’
To prevent this, we used a request reception flag to
indicate whether a job can be split. This enables a PE
to concentrate on job without being disturbed by other
PEs. '

(4) Protocols between PEs
For the communication between PEs, we have two kinds of
dedicated networks, as explained above. On the control
network, 16 time slots, one fixed location for each PE

are reserved. Each PE can access one time slot at a
time, and that time slot is shifted to next PE every 250
ns.

Each PE is also provided with dedicated hardware (CNA:
Control Network Adapter) to access the control network.
Each CNA sets its PE's activity status (busy/idle) on its
assigned time slot. When the CNA in a busy PE identifies
an idle PE, it sets a flag to indicate 1local PE. for
splitting a job.)

The PE then splits its job and part of the job is
passed to the idle PE via the Data network.

(5) Management of activities
In our system, there is no special method for managing
PE activities. The system automatically tries to offload
the busy PE, but only if there is an idle PE in the sys-
tem.

5. RESULTS OF THE EXPERIMENT AND THEIR EVALUATION
Data is still being collected from the experimental sys-

tem. Although it is too early to make a full evaluation, we -
would like to give a preliminary evaluation. . :

Y. Sohma et al.

5.1 Degree of Total Performance Improvement
We gathered data using an n-queen problem as a benchmark pro-
gram. The values were obtained by averaging several or
several tens of measured values.

As expected, the execution time varies for each measurement,
because of non-~determinism of hardware behavior. This is
iliustrated in table 1.

Table 1 Deviation of measured data

Execution time (9) number of communications (¢)
6Q 1090 (47) ns 114 (6)
79 2798 (113) ns 199 (25)
8Q 9331 (81) ns 250 (20)
9Q 40056 (117) ns -358 (34)
10Q 191252 (300) ns 413 (55)

The figure in parenthesis is the standard deviation.

Figure 3 shows the relationship between the number of PEs and
execution time. For a problem with a large search tree,' such
as an 8-,9-, or 1l0-queens problem, +the execution time
decreases almost linearly as the number of PEs increases.

Execution
time

(sec) 1000

100

10

1 2 . 4 8 12
No. of Processor element

Fig.3 Speed up factor due to parallel inference

A New Parallel Inference Mechanism 9

Based on the same data, Figure 4 shows the performance
improvement ratio due to the increase of the number of PEs.
The average activity ratio per PE is about 99% when thirteen
PEs are doing parallel inference for a 10-queens problem.

Performance
improvement
ratio

(S B0 R 1 e)]

PN S

12 13
No. of processor elements

Fig.4 Performance improvement ratio due to parallel inference

-

5.2 Detailed Analysis

Detailed analysis of the collected data has yielded the fol-
lowing results:
(1) PE performance

Absolute performance

Cne PE has a performance of approximately 1 KLIPS,
a2lmost equal to C-prolog on a vaxl1l1l/780.

Overhead during sequential execution

We tried to create the system based on sequential

Y. Sohma et al.

inference, to reduce the overhead for parallel processing
as much as possible. As mentioned before, however, over-
head is required for memorizing binding times of vari-
ables.

Therefore, we measured the percentage of the binding
time processing out of the total processing. When the
benchmark program (n-queen, quicksort) was executed using
one PE, the value was less than 6%. In other words, when
continuous processing is performed in one PE, our paral-
lel inference interpreter performs about as well as a
sequential inference interpreter.

Overhead during parallel execution

We also evaluated the processing time of one PE when a
job is executed in parallel by several PEs.

We sampled the processing of a PE in time series to
check the type of processing, for a 7-queens problem exe-
cuted by 13 PEs. Figure 5 shows the results.

TQueen

UNIFICATION
No. of PE :13

54.4

GOAL FRAME
18.9

Fig.5 Details of execution time in processor element

The abbreviations in the graph have the following mean-
ing:
UNIFICATION Unification

GOAL FRAME : Creation of frame on- stack
* BTRACK : Undo for backtracking

