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Preface

The microprocessor has revolutionised many fields of industrial and
business activity over the last decade, and industrial measurement and
control is no exception. Equipment systems now available are very
much more reliable and have almost 100% availability. They also offer
scope for implementing many control strategies which, though they
have been theoretically possible for many years, it has not been
practicable to implement until now. The reasons for this are firstly
digital computing power which became available in the 1960s when
DDC systems were introduced, and secondly distributed processing
which is the product of microprocessor technology.

The skills required by instrumentation and control engineers in the
process industries are more diverse than in many other disciplines. To
this must now be added considerable knowledge of electronics and
communication technology, if they are to be able to understand and
take advantage of these systems. The process engineer is responsible for
the structure of the control systems as opposed to the equipment systems:
he must understand much more about the equipment than was
necessary with analogue systems, if their advantages are to be fully
exploited. This book is written in the hope that it will provide an
introduction to the subject matter for these two groups of engineer at a
level which is both acceptable to them and also adequate for them to
comprehend the technologies involved. It is not written for those who
aspire to design the equipment systems themselves, though it may serve
as introductory reading even for this group. There are many excellent
books on each of the technologies which contribute to these systems,
written by engineers who have much deeper knowledge of a specific
technology than the author of this book.

The first part of the book describes the technology of measuring, inan
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industrial context, the most commeon and therefore most important
variables: pressure, level, flow and temperature. Part 2 of the book
endeavours to provide a minimal basis in the established techniques by
which process plant is regulated and controlled. These have not yet
changed greatly as a result of the much greater equipment flexibility; in
the immediate future they will certainly begin to do so. The pace of
change of such technologies is, however. by its nature, much slower than
that of the electronics technologies which have revolutionised the
equipment systems. The third part of this book sets out to describe how
these microprocessor-based equipment systems function and how they
are constructed from the standard components available in ‘chip’ form.
The later chapters of Part 3 introduce the reader to the problems of
transfer of data within these systems and describe how security of
operation is built into these systems to provide the reliability and
availability necessary. Finally Part 4 reviews the way that measurement
and control strategies can be (yet sometimes are not) implemented using
these equipment systems.

JOHN BORER
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CHAPTER 1

Principles of Industrial Measurement

1.1 GENERAL

In order to operate chemical plant processes, e.g. chemical reactions,
petroleum distillation, etc., it is essential to know the values of physical
states of the process flyids, such as pressure, temperature and density, as
well as rates of flow and often analytical data. Industrial instruments
have been developed to measure all these parameters and in turn the
instruments themselves depend on physical 1+ ws. Before we can use any
tool (and instruments are tools for mezsuimng) we need to know its
capability. It is necessay tc define limits of performance for any
measuring instrument or syitem, and before’ we can do this the
terminology used needs to be defined.

1.2 INSTRUMENT PERFORMANCE

It is important to determine with what precisiop.measurements can be
made using the instrument or system, but this will depend on many
factors. Because of slack in linkages, friction and many other:
imperfections, repeated measurements made with the same system will
only give the same result within a certain error band. This limitation on
performance of a measuring system is referred to as repeatability. No
matter how repeatable the results there will be a limit on the resolution
with which they can be indicated or recorded. The measuring system
will have a range or span over which it can work, and ideally a graph of
the relationship of measured variable to instrument indication (or
recording) wil] be a straight line (Fig. 1.1). In fact this will never be the
case, and accuracy will be defined as the limit of confidence which can

R
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2 Microprocessors in Process Control

ideal retationship

minimum
output
(not necessarily | measuring

28r0) range

1 minimum vaiue of
process variable

Fig. L.1.

maximum
instrument f— e -/-4-7-, s

output

. Inciuding
r" linearity errors
) process
variable
Fig. 1.2.

be placed in a measurement, taking all the factors into account
(Flg 1.2).

1.3 RANGEABILITY

Any industrial measurement system should give information of
sufficient accuracy to facilitate control of the process operations over a
range of operating conditions. It is often forgotten, however, that many
of the causes of error are related to the maximum of the measuring

range. Manufacturers usually quote errors in terms of FSD (full scale
deflection). If a process variable is to be measured it is implied that it '

varies in the course of normal process operation; to allow for such
variation the range of the measurement system will normally be selected
so that the normal operating value of the variable represents about 70%

J



Principles of Industrial Measurement 3

of FSD. Thus, if typically, a range of process variable of 3 to 1 is to be .
measured and the system accuracy is +1% FSD, then the ervors to be
expected at the lower end of the range will be

11
— X =+
(1x0.70x3) +5%

14 ASSESSMENT OF ERRORS ~

It is easier to say how the performance 6f a measurement system is
determined, than to determine it in practice. Whilst the instrument
technician at a refinery or chemical plant will rarely, if ever, be asked to
carry out such an evaluation experimentally, it is, nevertheless, essential
that he should understand how this is done. Sometimes the errors
caused in the different ways outlined above will cancel one another out;
sometimes they will add up and so reinforce each other. Thus the actual
error which occurs in any particular measurement is randomly
determined; only the probability that the error will be greateror less than
a certain size can be determined. The efore the accuracy of a
measurement system is alwavs quoted in statistical terms, that is the size
of error which has, say, a %% probability of occurring; it cannot be
quoted in any other way.

To establish this statistical data, experiments must be made
repeatedly with the measuring system under test, so that the error is
found on a sufficient number of occasions to allow the data to be
reliably grouped; the probability of the occurrence of errors of different
sizes can then be evaluated. This is obviously a very time-consuming
method.

1.5 CALIBRATION

Industrial measuring devices and systems must be robust and easily
maintainable, and to some extent accuracy is sacrificed to these ends.
. Any experiment to assess the error of measurément requires that there
~ exists some other means of establishing the true value of the process
variable being measured. Since such experiments are carried out under
laboratory conditions, a more accurate instrument is often available so
that the measurements can be made simultaneously on this and the
industrial instrument under test. Such high accuracy instruments are



