s il it » % MLW', -

THE

ELEMENTS
~ OF

PROGRAMMING B
STYLE

SECOND EDITION

Kernighan and Plauger

THE
ELEMENTS
OF
PROGRAMMING
STYLE

Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey

P. J. Plauger

Yourdon, Inc.
New York, New York

MCcGRAW-HILL BOOK COMPANY

New York St. Louis San Francisco Auckland Bogota Diisseldorf
Johannesburg London Madrid Mexico Montreal New Delhi
Panama Paris Sao Paulo Singapore Sydney Tokyo Toronto

Library of Congress Cataloging in Publication Data

Kernighan, Brian W.
The elements of programming style.

Bibliography: p.
Includes index.
1. Electronic digital computers— Programming.
1. Plauger, P.J., date joint author.
II. Title.
QA76.6. K47 1978 001.6'42 78-3498
ISBN 0-07-034207-5

The Elements of Programming Style

Copyright © 1978, 1974 by Bell Telephone Laboratories, Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of Bell Laboratories.

Printed in the United States of America.

234567890 DODO 78321098

This book was set in Times Roman and Courier 12 by the authors, using a Graphic Sys-
tems phototypesetter driven by a PDP-11/70 running under the UNIX operating system.

UNIX is a Trademark of Bell Laboratories.

We are deeply indebted to the following authors and publishers for their kind permission
to reproduce excerpts from the following copyrighted material:

R. V. Andree, J. P. Andree, and D. D. Andree, Comp Prog ing Techni Analysis, and Mathematics. Copyright ©
1973 by R. V. Andree. By permission of Prentice-Hall, Inc. ¢

F. B-a}es and M. L. Douglas, Programming Language/One with Structured Programming (Third Edition). Copyright ® 1975 by
Prentice-Hall, Inc. Reprinted by permission.

C. R. Bauer and A. P. Peluso, Basic Fortran IV with Watfor & Watfiv. Copyright © 1974 by Addison-Wesley Publishing Com-
pany, Inc. By permission.

C. R. Bauer, A. P. Peluso, and D. A. Gomberg, Basic PL/I Programming. Copyright ® 1968 by Addi Wesley Publishi
Company, Inc. By permission.

M. Bohl and A. Walter, /ntroduction to PL/I Programming and PL/C. Copyright ® 1973 by Science Research Associates, Inc.
Reprinted by permission of the publisher.

V. J. Calderbank, A Course on Programming in Fortran IV. Copyright ® 1969 by Chapman and Hall, Ltd. By permission.

Paul M. Chirlian, Introduction to Fortran 1V. Copyright ® 1973 by Academic Press. By permission.

Frank J. Clark, Introduction to PL/l Programming. Copyright ® 1971 by Allyn and Bacon, Inc. By permission.

Computerworld. Copyright © 1972 by Computerworid, Newton, Mass. 02160. By permission.

Dc.m.rmrion'. Copyright ® 1972, 1973 by Technical Publishing Company, Greenwich, Connecticut 06830. Reprinted with per-
mission.

D. F. DeTar, Principles of Fortran Programming. Copyright © 1972 by W. A. Benjamin, Inc., Menlo Park, California. By per-
mission of the publisher.

H. Dinter, Introduction to Computing. Copyright © 1973, Heinz Dinter. By permission of The Macmillan Company, New York.

D. Dmitry and T. Mott, Jr., Introduction to Fortran IV Programming. Copyright © Holt, Rinehart and Winston, Inc., 1966. By
permission.

V. T. Dock, Formran 1V Programming, Copyright ©® 1972 by Reston Publishing Cc , Inc. By per

W. S. Dorn, G. G. Bitter, and D. L. Hector, Computer Applications for Cakulus. Copyright ® Prindle, Weber & Schmidt, Inc.,
1972. By permission.

W. S. Dorn and D. D. McCracken, Numerical Methods with Fortran IV Case Studies. Copyright © 1972 by John Wiley & Sons,
Inc. By permission.

L. E. Edwards, PL/I for Business Applications. Copyright ® 1973 by Reston Publishing C , Inc. By per
M. V. Farina, Fortran 1V Self-Taught. Copyright © Prentice-Hall, Inc., 1966. By permission.
B. S. Gottfried, Programming with Forran IV. Copyright ® 1972 by Quantum Publishers, Inc. By permission.

Gabriel F. Groner, PL/l Prog ing in Technological Applicati Copyright ® 1971 by John Wiley and Sons, Inc. Reprinted
by permission of the publisher.
J. N. Haag, Comprehensive Standard Fortran Prog ing. Copyright © Hayden Book Company, Inc., 1969. By permission.

J. X. Hughes, PL/I Programming. Copyright © 1973 by John Wiley & Sons, Inc. By permission.

J. K. Hughes and J. 1. Michtom, A Structured Approach to Programmirg. Copyright © 1977 by Prentice-Hall, Inc. Reprinted by
permission.

R. J. Kochenburger and C. J. Turcio, Introduction to PL/1 and PLIC Programming - Instructor’s Guide. Copyright © 1974 by John
Wiley & Sons, Inc. By permission.

C. B. Kreitzberg and B. Shneiderman, The Elements of Fortran Style. Copyright © 1972 by Harcourt Brace Jovanovich, Inc. By
permission.

J. L. Kuester and }. H. Mize, Optimization Techni with Fortran. Copyright ® 1973 by McGraw-Hill, Inc. By permission.
S. S. Kuo, Computer Applications of Numerical Methods. Copyright © Addi Wesley Publishing Company, 1972. By permis-
sion.

H. L. Ledgard, Programming Proverbs. Copyright ® 1975 by Hayden Book Company. By permission.

R. S. Ledley, Fortran IV Programming. Copyright © McGraw-Hill, Inc., 1966. By permission.

G. O. Manifold, Calkulating With Forrran. Copyright © 1972 by Charles E. Merrill Publishing Co., Inc. By permission.
W. A. Manning and R. S. Garnero, 4 Fortran IV Problem Soiver. Copyright ® McGraw-Hill, Inc., 1970. By permission.

E. Marxer and D. Hartford, Ek of Ce Progr ing: Fortran. Copyright ® 1973. Published by Delmar Publishers, a
division of Litton Educational Publishing, lnc By permission.

D. D. McCracken, 4 Guide to Fortran IV Programming. Copyright ® 1965 by John Wiley and Sons, Inc. Reprinted by permis-
sion of the publisher.

vi THE ELEMENTS OF PROGRAMMING STYLE

D.‘ D. McCracken, A Guide to Fortran IV Programming, Second Edition. Copyright ® 1972 by John Wiley and Sons, Inc. Re-
printed by permission of the publisher.

C.‘ L McGowan a'nd J.R. Kelly, .Top-Down Structured Programming Techniques. Copyright © 1975 by Litton Educational Pub-
lishing, Inc. Reprinted by permission of Van Nostrand Reinhold Company, a division of Litton Educational Publishing, Inc.

L. P. Meissner, The Science of Computing. Copyright © 1974 by Wadsworth Publishing Company, Inc. By permission.
H. Mullish, Modern Programming: Formran 1V. Copyright ® 1968 by John Wiley & Sons, Inc. By permission.

Paul W. Murrill and Cecil L. Smith, Fortran IV Prog ing for Engineers and Scientists, Second Edition (Intext). Copyright ®
1973 by Harper & Row, Publishers, Inc. Used by permission of Harper & Row, Publishers.

Paul W. Murrill and Cecil L. Smith, PL/l Programming (Intext). Copyright ® 1973 by Harper & Row, Publishers, Inc. Used by
permission of Harper & Row, Publishers.

R. L. Nolan, Fortran IV Computing and Applications. Copyright © Addison-Wesley Publishing C , 1971. By permission.

E. I. Organick and L. P. Meissner, Fortran IV (Second Edition). Copyright © 1974 by Addison-Wesley Publishing Company,
Inc. By permission.

S. V. Pollack, A Guide to Fortran IV. Copyright © Columbia University Press, 1965. By permission.

Seymour V. Pollack and Theodor D. Stetling, 4 Guide to PL/. Copyright © 1969 by Holt, Rinehart and Winston. Reprinted
by permission of Holt, Rinehart and Winston.

Seymour V. Pollack and Theodor D. Sterling, A Guide to PL/I (Second Edition). Copyright ® 1976 by Holt, Rinehart and Wins-
ton. Reprinted by permission of Holt, Rinehart and Winston.

Seymour V. Pollack and Theodor D. Sterling, Essentials of PL/l. Copyright ©® 1974 by Holt, Rinehart and Winston. Reprinted
by permission of Holt, Rinehart and Winston.

A. Ralston, Formran IV P) ing, A Concise E: ition. Copyright © McGraw-Hill, Inc., 1971. By permission.

J. K. Rice and J. R. Rice, Introduction to Computer Science. Copyright © 1969 by Holt, Rinehart and Winston, Inc. Reprinted
by permission of Holt, Rinehart and Winston, Inc.

G. L. Richardson and S. J. Birkin, Program Soiving Using PL/C. Copyright ® 1975 by John Wiley & Sons, Inc. By permission.
1. S. Roper, PL/l in Easy Stages. Copyright © 1973 by Paul Elek (Scientific Books) Ltd. By permission.

W. P. Rule, Formran 1V Programming. Copyright © 1968 by W. P. Rule. Prindle, Weber & Schmidt, Inc. By permission.
Schoo! Mathematics Study Group, Algorithms, Ca ion and Math ics, Fortran Suppl Student Text (Revised Edition).

Copyright © Stanford University, 1966. By permission. No endorsement by SMSG is implied.

G. L. Scott and J. Scott, PL/I, A Self-Instructional Manual. Copyright ©® 1969 by Dickenson Publishing Company. By permis-
sion.

R. C. Scott and N. E. Sondak, PL/! for Programmers. Copyright ® Addi Wesley Publishing C: , 1970. By permission.

Donald D. Spencer, Programming with USA Standard Fortran and Fortran 1V. Copyright © 1969 by Xerox Corporation. Used by
permission of Ginn and Company (Xerox Corporation).

Donald D. Sp , Computers and Prog ing Guide For Engineers. Copyright ©® 1973 by Howard W. Sams & Co., Inc. By
permission.

R. C. Sprowls, Iniroduction to PL/] Programming. Copyright ® 1969 by Harper & Row, P
R. A. Stern and N. B. Stern, Principles of Data Processing. Copyright © 1973 by John Wiley & Sons, Inc. By permission.

F. Stuart, Fortran Programming. Copyright © 1969 by Fredric Stuart. Reprinted by permission of John Wiley and Sons, Inc.

A. Vazsonyi, Problem Solving by Digital Computers with PLI Programmirg. Copyright © Prentice-Hall, Inc., 1970. By permis-
sion.

T. M. Walker and W. W. Cotterman, An Introduction to Computer Science and Algorithmic Processes. Copyright ® 1971 by Allyn
and Bacon, Inc. Used by permission.

G. M. Weinberg, PL/l Programming: A Manual of Style. Copyright ® McGraw-Hill, Inc., 1970. By permission.

Wlich

s, Inc. By per

PREFACE to the Second Edition

The practice of computer programming has changed since The Elements of Pro-
gramming Style first appeared. Programming style has become a legitimate topic of
discussion. After years of producing ‘‘write-only code,” students, teachers, and
computing professionals now recognize the importance of readable programs. There
has also been a widespread acceptance of structured programming as a valuable cod-
ing discipline, and a growing recognition that program design is an important phase,
too often neglected in the past.

We have revised The Elements of Programming Style extensively to reflect these
changes. The first edition avoided any direct mention of the term “‘structured pro-
gramming,”’ to steer well clear of the religious debates then prevalent. Now that the
fervor has subsided, we feel comfortable in discussing structured coding techniques
that actually work well in practice.

The second edition devotes a whole new chapter to program structure, showing
how top-down design can lead to better organized programs. Design issues are dis-
cussed throughout the text. We have made considerable use of pseudo-code as a
program development tool.

We have also rewritten many of the examples presented in the first edition, to
reflect (we hope) a greater understanding of how to program well. There are new
examples as well, including several from the first edition which now serve as models
of how not to do things. New exercises have been added. Finally, we have
extended and generalized our rules of good style.

We are once again indebted to the authors and publishers who have graciously
given us permission to reprint material from their textbooks. Looking back on some
of our own examples makes us realize how demanding an effort good programming
is.

We would also like to thank friends who read the second edition in draft form.
In particular, Al Aho, Jim Blue, Stu Feldman, Paul Kernighan, Doug Mcliroy,
Ralph Muha, and Dick Wexelblat provided us with valuable suggestions.

Brian W. Kernighan

P. J. Plauger

ix

PREFACE to the First Edition

Good programming cannot be taught by preaching generalitiecs. The way to
learn to program well is by seeing, over and over, how real programs can be
improved by the application of a few principles of good practice and a little common
sense. Practice in critical reading leads to skill in rewriting, which in turn leads to
better writing.

This book is a study of a large number of ‘‘real’’ programs, each of which pro-
vides one or more lessons in style. We discuss the shortcomings of each example,
rewrite it in a better way, then draw a general rule from the specific case. The
approach is pragmatic and down-to-earth; we are more interested in improving
current programming practice than in setting up an elaborate theory of how pro-
gramming should be done. Consequently, this book can be used as a supplement in
a programming course at any level, or as a refresher for experienced programmers.

The examples we give are all in Fortran and PL/I, since these languages are
widely used and are sufficiently similar that a reading knowledge of one means that
the other can also be read well enough. (We avoid complicated constructions in
either language and explain unavoidable idioms as we encounter them.) The princi-
ples of style, however, are applicable in all languages, including assembly codes.

Our aim is to teach the elements of good style in a small space, so we concen-
trate on essentials. Rules are laid down throughout the text to emphasize the les-
sons learned. Each chapter ends with a summary and a set of ‘‘points to ponder,”
which provide exercises and a chance to investigate topics not fully covered in the
text itself. Finally we collect our rules in one place for handy reference.

A word on the sources of the examples: all of the programs we use are taken
from programming textbooks. Thus, we do not set up artificial programs to illus-
trate our points — we use finished products, written and published by experienced
programmers. Since these examples are typically the first code seen by a novice pro-
grammer, we would hope that they would be models of good style. Unfortunately,
we sometimes find that the opposite is true — textbook examples often demonstrate
the state of the art of computer programming all too well. (We have done our best
to play fair — we don’t think that any of the programs are made to look bad by
being quoted out of context.)

Let us state clearly, however, that we intend no criticism of textbook authors,
either individually or as a class. Shortcomings show only that we are all human, and
that under the pressure of a large, intellectually demanding task like writing a pro-
gram or a book, it is much too easy to do some things imperfectly. We have no

xi

Xii ~ THE ELEMENTS OF PROGRAMMING STYLE

doubt that a few of our ‘‘good’’ programs will provide ‘‘bad’’ examples for some
future writer — we hope only that he and his readers will learn from the experience
of studying them carefully.

A manual of programming style could not have been written without the
pioneering work of numerous people, many of whom have written excellent pro-
gramming textbooks. D. D. McCracken and G. M. Weinberg, for instance, have
long taught the virtues of simplicity and clarity. And the work of E. W. Dijkstra and
Harlan Mills on structured programming has made possible our rules for properly
specifying flow of control. The form and approach of this book has been strongly
influenced by The Elements of Style by W. Strunk and E. B. White. We have tried to
emulate their brevity by concentrating on the essential practical aspects of style.

We are indebted to many people for their help and encouragement. We would
like especially to thank the authors and publishers who gave us permission to repro-
duce the computer programs used in this text. Their cooperation is greatly appreci-
ated.

Our friends and colleagues at Bell Laboratories provided numerous useful
suggestions, which we have incorporated, and saved us from more than one embar-
rassing blunder, which we have deleted. In particular, V. A. Vyssotsky bore with us
through several revisions; for his perceptive comments and enthusiastic support at
every stage of this book’s evolution (and for several aphorisms we have shamelessly
stolen) we are deeply grateful. We would also like to single out A. V. Aho, M. E.
Lesk, M. D. Mcliroy, and J. S. Thompson for the extensive time and assistance they
gave to this project.

We were able to type the manuscript directly into a PDP 11/45, edit the source,
check the programs, and set the final version in type — all with the help of a
uniquely flexible operating system called UNIX. K. L. Thompson and D. M. Ritchie
were the principal architects of UNIX; besides reading drafts, they helped us get the
most out of the system while we were working on this book. J. F. Ossanna wrote
the typesetting program and made several modifications for our special needs. We
thank them.

Brian W. Kernighan

P. J. Plauger

THE
ELEMENTS
OF
PROGRAMMING
STYLE

N~

Preface to the Second Edition
Preface to the First Edition

Introduction

Expression

Control Structure

Program Structure

Input and Output

Common Blunders

Efficiency and Instrumentation
Documentation

Epilogue
Supplementary Reading
Summary of Rules
Index

vii

CONTENTS

ix
xi

59

83
101
123
141

155
157
159
163

CHAPTER 1: INTRODUCTION

Consider the program fragment
DO 14 I=1,N

DO 14 J=1,N
14 V(I,3)=(I/J)*(I/1)

A modest familiarity with Fortran tells us that this doubly nested DO loop assigns
something to each element of an N by N matrix V. What are the values assigned? I
and J are positive integer variables and, in Fortran, integer division truncates
toward zero. Thus when I is less than J, (I/J) is zero; conversely, when J is less
than I, (J/I) is zero. When I equals J, both factors are one. So (I/J)*(J/I)
is one if and only if I equals J; otherwise it is zero. The program fragment puts
ones on the diagonal of V and zeros everywhere else. (V becomes an identity
matrix.) How clever!

Or is it?

Suppose you encountered this fragment in a larger program. If your knowledge
of Fortran is sufficiently deep, you may have enjoyed the clever use of integer divi-
sion. Possibly you were appalled that two divisions, a multiplication, and a conver-
sion from integer to floating point were invoked when simpler mechanisms are
available. More likely, you were driven to duplicating the reasoning we gave above
to understand what is happening. Far more likely, you formed a vague notion that
something useful is being put into an array and simply moved on. Only if motivated
strongly, perhaps by the need to debug or to alter the program, would you be likely
to go back and puzzle out the precise meaning.

A better version of the fragment is

C MAKE V AN IDENTITY MATRIX

DO 14 I = 1,N
DO 12 J = 1,N
12 v(1,J3) = 0.0
14 V(I,I) =1.0

This zeros each row, then changes its diagonal element to one. The intent is now
reasonably clear, and the code even happens to execute faster. Had we been pro-
gramming in PL/I, we could have been more explicit:

2 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 1

/* MAKE V AN IDENTITY MATRIX x/
Vv =20.0;
DO I =1 TO N;
V{I,I) = 1.0;
END;

In either case, it is more important to make the purpose of the code unmistak-
able than to display virtuosity. Even storage requirements and execution time are
unimportant by comparison, for setting up an identity matrix must surely be but a
small part of the whole program. The problem with obscure code is that debugging
and modification become much more difficult, and these are already the hardest
aspects of computer programming. Besides, there is the added danger that a too-
clever program may not say what you thought it said.

Write clearly — don’t be too clever.

Let’s pause for a moment and look at what we’ve done. We studied part of a
program, taken verbatim from a programming textbook, and discussed what was
good about it and what was bad. Then we made it better. (Not necessarily perfect
— just better.) And then we drew a rule or a general conclusion from our analysis
and improvements, a rule that would have sounded like a sweeping generality in the
abstract, but which makes sense and can be applied once you’ve seen a specific case.

The rest of the book will be much the same thing — an example from a text,
discussion, improvements, and a rule, repeated over and over. When you have
finished reading the book, you should be able to criticize your own code. More
important, you should be able to write it better in the first place, with less need for
criticism.

We have tried to sort the examples into a logical progression, but as you shall
see, real programs are like prose — they often violate simultaneously a number of
rules of good practice. Thus our classification scheme may sometimes seem arbi-
trary and we will often have to digress.

Most of the examples will be bigger than the one we just saw, but not exces-
sively so; with the help of our discussion, you should be able to follow them even if
you’re a beginner. In fact, most of the bigger programs will shrink before your very
eyes as we modify them. Sheer size is often an illusion, reflecting only a need for
improvement.

The examples are all in either Fortran or PL/I, but if one or both of these
languages is unfamiliar, that shouldn’t intimidate you any more than size should.
Although you may not be able to write a PL/I program, say, you will certainly be
able to read one well enough to understand the point we are making, and the prac-
tice in reading will make learning PL/I that much easier.

For example, here is a small part of a PL/I program that we will discuss in
detail in Chapter 4:

CHAPTER 1 INTRODUCTION 3

IF CTR > 45 THEN GO TO OVFLO;
ELSE GO TO RDCARD;
QOVFLO:

The first GOTO simply goes around the second GOTO, which seems a bit disorgan-
ized. If we replace > by <=, we can write

IF CTR <= 45 THEN GOTO RDCARD;
OVFLO:

One less statement, simpler logic, and, as it happens, we no longer need the label
oVFLO. The lesson? Don’t branch around branches: turn relational tests around if
it makes the program easier to understand. We will soon see a Fortran example of
exactly the same failing, which brings up an important point: although details vary
from language to language, the principles of style are the same. Branching around
branches is confusing in any language. So even though you program in Cobol or
Basic or assembly language or whatever, the guidelines you find here still apply.

It might seem that we’re making a great fuss about a little thing in this last
example. After all, it’s still pretty obvious what the code says. The trouble is,
although any single weakness causes no great harm, the cumulative effect of several
confusing statements is code that is simply unintelligible.

Our next example is somewhat larger:

The following is a typical program to evaluate the square root (B) of a number (X):

READ(5,1)X
1 FORMAT (F10.5)
A=X/2
2 B=(X/A+A)/2
C=B-A
IF(C.LT.0)C=-C
IF(C.LT.10.E-6)GOTO 3
A=B
GOTO 2
3 WRITE(6,1)B
sTOP
END

Because it is bigger, we can study it on several levels and learn something from
each. For instance, before we analyze the code in detail, we might consider whether
this program is truly ‘‘typical.”” It is unlikely that a square root routine would be
packaged as a main program that reads its input from a file — a function with an
argument would be far more useful. Even assuming that we really do want a main
program that computes square roots, is it likely that we would want it to compute
only one before stopping?

This unfortunate tendency to write overly restricted code influences how we
write programs that are supposed to be general. Soon enough we shall meet pro-
grams designed to keep track of exactly seventeen salesmen, to sort precisely 500
numbers, to trace through just one maze. We can only guess at how much of the
program rewriting that goes on every day actually amounts to entering parameters
via the compiler.

4 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 1

Let us continue with the square root program. It is an implementation of
Newton’s method, which is indeed at the heart of many a library square root routine
(although we need not go into precisely how it works). With proper data, the
method converges rapidly. If X is negative, however, this program can go into an
infinite loop. (Try it.) A good routine would instead provide an error return or a
diagnostic message. And the program blows up in statement 2 if X is zero, a case
that must be treated separately. The square root of zero should be reported as zero.

Even for strictly positive values of X this program can give garbage for an
answer. The problem lies in the convergence test used:

C=B-A
IF (C.LT.0)C=-C
IF(C.LT.10.E-6)GOTO 3

To make effective use of the Fortran language, the second line should read
C = ABS(C)

To avoid having someone misread 10.E-6 as ‘10 to the minus sixth power,”’ the
constant in the third line should be 1 .0E-5 or even 0.00001. And to say what is
meant without bombast, all three lines should be changed to

IF (ABS(B-A) .LT. 1.0E-5) GOTO 3

The test now reads clearly; it is merely wrong.

If X is large, it is quite possible that the absolute difference between successive
trial roots will never be less than the arbitrary threshold of 1.0E-5 unless it is
exactly zero, because of the finite precision with which computers represent
numbers. It is a delicate question of numerical analysis whether this difference will
always become zero. For small values of X, on the other hand, the criterion will be
met long before a good approximation is attained. But if we replace the absolute
convergence criterion by a test of whether the estimate is close enough relative to the
original data, we should get five place accuracy for most positive arguments:

C COMPUTE SQUARE ROOTS BY NEWTON'S METHOD
100 READ(5,110) X

110 FORMAT (F10.0)
c

IF (X .LT. 0.0) WRITE(6,120) X
120 FORMAT (1X, ’'SQRT(’, 1PE12.4, ') UNDEFINED')
C

IF (X .EQ. 0.0) WRITE(6,130) X, X
130 FORMAT (1X, ’'SQRT(’, 1PE12.4, ’) = ', 1PE12.4)
c

IF (X .LE. 0.0) GOTO 100
B = X/2.0
200 IF (ABS(X/B - B) .LT. 1.0E-5 * B) GOTO 300
B = (X/B + B) / 2.0
GOTO 200
300 WRITE(6,130) X, B
GOTO 100
END

The modified program is still not a typical square root routine, nor do we wish
to go into the detailed treatment of floating point arithmetic needed to make it one.
The original example is, however, typical of programs in general: it profits from

CHAPTER 1 INTRODUCTION 5

criticism and revision.

Let us conclude the chapter with another example that illustrates several fail-
ings. This program is a sorting routine.
DIMENSION N(500)
WRITE (6,6)
6 FORMAT (1H1,26HNUMBERS IN ALGEBRAIC ORDER)
DO 8 I=1,500
8 READ (5,7) N(I)
7 FORMAT (I4)
DO 10 K=1,1999
J=K-1000
DO 10 I-1,500
IF(N(I1)-J)10,9,10
10 CONTINUE
STOP
9 WRITE (6,95) N(I)
95 FORMAT (1H ,I4)
GO TO 10
END

The code suffers not only from lack of generality, but from an ill-advised algorithm,
some dubious coding practices, and even a typographical error. The line

po 10 I-1,500

is wrong: the ‘‘=>> should be ““‘=". The program was contrived in part to illustrate
that the range of a DO loop can be extended by a transfer outside and back, even
though in this case the inner DO loop and the code of the extended range can all be
better written in line as
DO 10 I = 1, 500
IF (N(I) .EQ. J) WRITE (6,95) N(I)

95 FORMAT(1X, I4)
10 CONTINUE

More to the point is the question of whether programmers should be
encouraged to use extended ranges in the first place. Jumping around unnecessarily
in a computer program has proved to be a fruitful source of errors, and usually indi-
cates that the programmer is not entirely in control of the code. The apparently ran-
dom statement numbers in this example are often a symptom of the same disorder.

The program has other flaws. It reads in 500 numbers, one per card, and sorts
them about as inefficiently as possible — by comparing each number with all
integers between —999 and +999. It does this once, for only one set of numbers,
then stops.

But wait. With an I4 input format, it is possible to read positive numbers as
large as 9999, since we can leave out the plus sign; the program as it stands will fail
to list four-digit numbers. To correct the oversight will slow the algorithm by a fac-
tor of more than five, without extending its generality in the least. Extending this
method to handle larger integers would slow it by orders of magnitude, and to ask it
to handle floating point numbers would be unthinkable.

We will not attempt to rewrite this code, since we disagree with its basic
approach. (Chapter 7 contains several better sorting programs.) We just want to

6 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 1

show that the same program can be viewed from different perspectives, and that the
job of critical reading doesn’t end when you find a typo or even a poor coding prac-
tice. In the chapters to come we will explore the issues touched on here and several
others that strongly affect programming style.

We begin, in Chapter 2, with a study of how to express individual statements
clearly. Writing arithmetic expressions and conditional (IF) statements is usually
the first aspect of computer programming that is taught. It is important to master
these fundamentals before becoming too involved with other language features.

Chapter 3 treats the control-flow structure of computer programs, that is, how
flow of control is specified through looping and decision-making statements. It also
shows how data can be represented to make programming as easy as possible, and
how data structure can be used to derive a clean control flow. Program structure is
covered in Chapter 4, how to break up a program into manageable pieces. Consid-
erable emphasis is given in these chapters to proper use of structured programming
and sound design techniques.

Chapter 5 examines input and output: how to render programs less vulnerable
to bad input data and what to output to obtain maximum benefit from a run. A
number of common blunders are studied in Chapter 6, and tips are given on how to
spot such errors and correct them.

Contrary to popular practice, efficiency and documentation are reserved for the
last two chapters, 7 and 8. While both of these topics are important and warrant
study, we feel they have received proportionately too much attention — particularly
in introductory courses — at the expense of clarity and general good style.

A few words on the ground rules we have used in criticizing programs:

(1) Programs are presented in a form as close to the original as our typescript per-
mits. Formatting, typographical errors, and syntax errors are as in the original.
(Exception: three PL/I programs have been translated from the 48-character set
into the 60-character set.)

(2) We regularly abstract parts of programs to focus better on the essential points.
We believe that the failings we discuss are inherent in the code shown, and not
caused or aggravated by abstracting. We have tried not to quote out of context.
We have tried throughout to solve essentially the same problem as the original
version did, so comparisons may be made fairly, even though this sometimes
means that we do not make all possible improvements in programs.

(3) We will not fault an example for using non-standard language features (for
example, mixed mode arithmetic in Fortran) unless the use is quite unusual or
dangerous. Most compilers accept non-standard constructions, and standards
themselves change with time. Remember, though, that unusual features are
rarely portable, and are the least resistant to changes in their environment.

Our own Fortran hews closely to the 1966 American National Standards Insti-
tute (ANSI) version, except for our use of quoted Hollerith strings (we refuse
to count characters). PL/I programs meet the standard set by IBM’s checkout
compiler, version 1, release 3.0. Although there are new versions of Fortran
and PL/I in sight which will make better programming possible in both of these

CHAPTER 1 INTRODUCTION 7

@

&)

languages, they are not yet widespread, so we have not written any examples in
the newer dialects.

In our discussions of numerical algorithms (like the square root routine above)
we will not try to treat all possible pathological cases; the defenses needed
against overflow, significance loss, and other numerical pitfalls are beyond the
scope of this book. But we do insist that at least the rudimentary precautions
be taken, like using relative tests instead of absolute and avoiding division by
zero, to ensure good results for reasonable inputs.

Every line of code in this book has been compiled, directly from the text, which
is in machine-readable form. All of our programs have been tested (Fortran on
a Honeywell 6070, PL/I on an IBM 370/168). Our Fortran programs have also
been run through a verifier to monitor compliance with the ANSI standard.

Nevertheless, mistakes can occur. We encourage you to view with suspicion
anything we say that looks peculiar. Test it, try it out. Don’t treat computer
output as gospel. If you learn to be wary of everyone else’s programs, you will
be better able to check your own.

