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Preface

This book is a slightly expanded and revised version of the lecture notes from
the NSF/CBMS Regional Conference held in Tempe, Arizona in May. 1984, at
which the third author was the principal lecturer. In the book we have tried to
summarize some of the voluminous progress that has been made in the theory of
dual algebras since the appearance in 1978 of Scott Brown’s pioneering paper.
which clearly showed the utilitv of this concept for studying the structure theory
of bounded linear operators on Hilbert space. The aim of the book is to present
an approach for studying (nonselfadjoint) dual algebras that allows one to obtain.
in particular, results on invariant subspaces and dilation theory.

The book is put together as follows. Chapter I consists of preliminaries of a
general nature concerning dual algebras. Most of Chapters 11, III, IV, and X are
taken from [6a]. but Chapters III and VI contain some new material. especially
Theorem 6.3 and the results leading up to it. Chapters IV and V are taken from
{10]. and Chapter VIII comes from [7a)] and [6b]. Chapter VI1II is a rewrite of part
of [11] and [12a}. and Chapter IX is taken {rom a version of {11a).

We wish to acknowledge our indebtedness to Constantin Apostol and Béla
Sz.-Nagy. with whom we obtained many of the results to be found herein, and to
Frank Gilfcather and the other members of the Mathematical Sciences Section of
the National Science Foundation, whose support and encouragement have con-
tributed greatly to our efforts. )
Hari Bercovici
Ciprian Foiag
Carl Pearcy

Ann Arbor. Michigun
December 1984
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1. Dual Algebras

In these lectures we will be interested in bounded linear operators acting on a
separable, complex Hilbert space. Mostly, we will be interested in the case in
which the Hilbert space is infinite dimensional, but in several topics to be treated,
the finite-dimensional case is interesting and sometimes even important. Thus,
throughout the book X will denote a separable complex Hilbert space whose
dimension is less than or equal to ¥, and £(*") will denote the algebra of all
hounded linear operators on ¥". Furthermore, rthroughout the book # will denote
a separable, complex Hilbert space whose dimension is equal to 8.

With ¥ as above, let K = K(X") denote the norm-closed ideal of compact
operators in (X)), and recall that i contains all other proper ideals in £(¢").
The quotient space £ (¥")/K is a C*-algebra which is trivial when dim X< X,
and is called the Calkin algebra when X¥'= 5. The projection of £ () onto the
Calkin algebra is denoted by 7. If K € K(5¢), we write the polar decomposition
K = UP, where P = (K*K)"2_Then, of course. P € K( ) and thus has a
Jdiagonal matrix Diag(A,, A,, .. .) relative to some orthonormal basis {e, }7., for
X, where X > 0 for n € N. This correspondence P ~ Diag(A,, A,,...) can be
used to define the Schatten p-ideals as follows.

For p > 1, define €, = €,(J¢) to be the set of all K = UP belonging to
K7 ) such that 7_ | A? < + 0.

PROPOSITION 1.1. Forp > 1, €,(¥) is a (two-sided ) ideal in L(H) which is a
Banach *-algebra under the norm ||K|l, = {E7_, A5 }'/?. The family (€,(#)},,.,
is increasing, and if 1 < p < q, then || K|l < ||K||, < IK|i, for all K in €,(5¢).

We will mostly be interested in ¥,(5#), the trace-class, and, 10 a lesser extent,
€,( ), the Hilbert-Schmidt class.

DEerFINITION 1.2, If X'+ (0) is a finite-dimensional Hilbert space, then the only
nonzero ideal in Z(X) is L(X') itself. Nevertheless, for p > 1, we will write
%, (X") for £ (X'} equipped with the norm || ||, defined similarly to what was
done above, and we call €,(X¥') and €,(X') the trace-class and Hilbert-Schmidt
class on X', tespeciively, equipped with the 1race norm || ||, and Hilbert-Schmidt
norm || {},.
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The following proposition shows where the trace-class gets its name.

PROPOSITION 1.3. With X~ as always, there is a continuous linear functional tr:
C\(XA") — C on the trace-class with the property that if {e,.},, e »s is any orthonor-
mal basis for X”, then tt( K) = L, c (Ke,,, €,,) and

lr(K) | <Kl = w((K*K)"?)

for every K in € (X'). Finally, if T € £(X') and K € €,(X"), then t(TK) =
tr(KT).

In these lectures operators of rank one will play a distinguished role, so it is
worthwhile to review some elementary facts about them. If x, y € X°, we denote
by x ® vy the rank-one operator defined by (x ® y)(u) = (u, y)x for every u in
¥, One easily checks that if 4 € £(X"), then

A(x®y)=(4x)®y and (x ® y)(4) =x ®(4*y).

PrOPOSITION 1.4. For all x, yin X, x® y € €, tr(x ® y) = (x, y), and
flx ® pliy = llx ® yli = [Ixliljyil

We now recall some standard duality results (cf. [18, p. 40)).

PROPOSITION 1.5. With X~ as always, the dual space €,(X')* of the Banach
space €,(X) can be identified with L(X'). This duality is implemented by the
bilinear functional

(T.K)=t(TK), TeZL(X) Ke ¢,
In particular, we have that
1Tl = sup (KT, K)|: K € %\, | Kl < 1)

and

Ikl = sup{{T, K)|: T € 2(), | T} < 1}.

Throughout the remainder of these lectures we will identify #,(X")* with
£ (X') without further comment. In particular, this duality gives to £(X') a
weak* topology, which is characterized by the fact that a net {T,) in £(X") is
weak* convergent to an operator T, if and only if for every K € €, tf(TK) —
tr(7, K ). We now briefly review some other important topologies on £ (X').

The ultraweak operator topology on £(X') is that locally convex, Hausdorff
topology determined by saying that a net {7, } in £ (X") converges ultraweakly
to T, if and only if, for every pair {x,}7., and {y,}¥., of sequences from X’
such that L2, |lx,lI> < oo and T2 Iy li2 < oo, we have L2 (Tyx,, y,) =
En--l(T‘ xn’ yn)

The weak operator topology (WOT) on Z(X) is that locally convex, Hausdorff
topology determined by saying that a net {7}, } in .£(X") WOT-converges to T, if
and only if, for all x, y € X", (T,x, y) —= (T,x, y), or, equivalently,

te(Ty(x @ y)) = w(Tp(x ® y)).
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The strong operator topology (SOT) on Z(X") is that locally convex, Hausdorff
topology determined by saying that a net {T, } in #(X) converges strongly to 7,
if and only if, for all x € ", (T, — T)x|| — 0.

The following proposition gives some relationships between these topologies.
For more detail, see, for example, [18, p. 32].

PROPOSITION 1.6. The weak* topology and the ultraweak operator topolugy on
L (H#) coincide. This topology, which we usually call the weak®* topology, und the
strong operator topology are both stronger than the weak operator topology on
L(H) and weaker than the norm topology on £ (#). The weak* topology and
strong operator topology are not comparable on L(X’). If B C L (X) is any
(norm) bounded set, then the relative topologies induced on % by the weak™® and
weak operator topologies coincide. Hence the unit ball in £(X) is compact and
metrizable in the weak operator topology. If X is finite dimensional, all of the
above-mentioned topologies coincide on L (X).

It is important to know what form the continuous linear functionals on £ (5¥¢)
in these various topologies take (cf. [18, p. 37] for more detail).

PrOPOSITION 1.7. Suppose M is a linear manifold in L (H#). Then the WOT-
closure and SOT-closure of M coincide. The WOT-continuous linear functionals on
M coincide with the SOT-continuous linear functionals on M, and these are exactly
the linear functionals of the form

n n
A(T)= Z(Txnyi)=tr(T(zxi®J’i))v Te#,
i=1 \ =1

where {x;}{., and {y;}/-, are any equipotent finite sequences from X¥°. The
weak *-continuous linear functionals on A are exactly those of the form

20 «c

g(T)= Z(Txi5y1)=tr(T(z:xi®yi))’ TE‘”)
i=1 [y i=1 }

where {x, )2, and {y,}%., are any square-summable sequences from . More-

over, the sequences { x,} and { y,} may be chosen to satisfy j|gl| = Zllx;||1> = Ty

We come now to the subject of these lectures.

DEeFINITION 1.8. With X as always, a dual algebra is a subalgebra of Z(X")
that contains 1, and is closed in the weak* topology on £(X¢').

ExaMpLEs 1.9. The following are dual algebras:

(3) L(X), where 1 < dimXH'< R

(b) any finite-dimensional subalgebra of .#(X¢") that contains 1,., for example,
the algebra of scalar operators; '

(c) any von Neumann algebra on 5¢ which contains 1 ,;

(d) the commurant &’ of any subset & of ZL(X'),
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{(e) the smallest weak*-closed subalgebra &, of £(X") that contains a given
operator T and 1. The dual algebra &/ is called the dual algebra generated
by T,

(f) the algebra of all analytic Toeplitz operators relative to some fixed orthonor-
mal basis for . This is a particular case of (e).

ExaMpPLE 1.10. There exists a commutative dual algebra that is not closed in the
WOT. Indeed, let K be an operator in €,(5) that is not of finite rank, and let
# denote the kernel of the weak*-continuous linear functional induced on
L(H)byK,ie,

' M={(TeL(H) u(KT)=0}.
Note that .# is weak*-closed but not WOchlosed. (For, if .# were WOT-closed,
then K would induce a WOT-continuous functional on .#, and thus by Proposi-
tion 1.7, K would necessarily be of finite rank.) Now consider the algebra
o C L(H#® H#) defined by

o= {(f‘) i) )\eC,TeI}.

It is easy to see that o/ is weak*-closed but not WOT-closed.

PrROBLEM 1.11. Does there exist a singly generated dual algebra &/, that is not
WOT-closed? Westwood [33a] has shown that there exists a (WOT-closed) singly
generatéd dual algebra on which the weak* topology and WOT do not coincide.

DEFINITION 1.12. If & is any subset of £(X), then * &= (K € %,: (K, S)
=0, S € %}, is the preannihilator of &, which is a (weakly closed) subspace of
%,. (Here we mention for the first time the weak topology on €, that accrues to it
as the predual of £(X'). We also note that in these lectures the word “subspace”
always means “norm-closed lincar manifold™.)

DEerINITION 1.13. If & is a subset of #(X"), then a subspace A4 of X is a
nontrivial invariant subspace (n.i.s.) for & if (0) # # # X and S C # for
every S € & and a nontrivial hyperinvariant subspace (n.h.s.) for & if it is a n.i.s.
for the dual algebra %’. The lattice of all invariant subspaces for % will be
denoted by Lat(%) and the lattice of all hyperinvariant subspaces of % by
Hlat(%).

The following elemehtary proposition shows the importance of preannihilators
and rank-one operators.

PROPOSITION 1.14. A dual algebra o € L(X') has a n.i.s. if and only if Lot

contains some rank-one operator x ® y, and a n.h.s. if and only if * (') contains
a rank-one operator.

DEFINITION 1.15. If & is a subset of LX) we write AlgLat(#) for the dual
algebra (which is WOT-closed) consisting of all T € £ (X') with Lay(7)>
Lai(&#). A (necessarily WOT-closed) subalgebra & of ZL(X') is reflexive if
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# = Alg Lat(#). An operator T in Z(X') is reflexive if # 7, the smallest
WOT-closed algebra containing T and 1, is reflexive.

Whether an slgebra @ or an operator T is reflexive is of considerable interest,
because reflexive algebras and operators, as one can easily see from the defini-
tions, have a good supply of nontrivial invariant subspaces. This topic is studied
in Chapter IX.

The following elementary facts about preannihilators are extracted from [26a].

PROPOSITION 1.16. If # is a weak*-closed subspace of £ (), then M is
WOT-closed if and only if * M is the || ||,-closure of the finite-rank operators in
‘A

PROPOSITION 1.17. If o/ C L(X) is a dual algebra, then 5 is reflexive if and
only if +s is the smallest subspace of €, containing all the rank-one operators in
t.

PROPOSITION 1.18. If & is a subset of L () then &’ is a dual algebra whose
preannihilator +($°') is the subspace of €, generated by the set { KS — SK:
K € €,, S € %). In particular, if T € L (H), then * (A7) is the || |,-closure of
the linear manifold {TK — KT: K € €,}, and hence T has a n.h.s. if and only if
there exists a rank-one operator x ® y and a sequence { K, )., of operators in €,
such that |(x ® y) —(TK, - K, T)||, = 0.

We turn now to the proposition which shows why dual algebras are named as
they are. For a proof, see [16, Proposition 2.1 and Corollary 2.2].

PROPOSITION 1.19. Let X be a complex Banach space and let # be a weak®
closed subspace of X* with preannihilator * #. Then X/ * A is a Banach space
whose dual ( X/ L M#)* can be identified with 4. In particular, with X as always,
if # is a weak* closed linear manifold in L(X'), then €,(X)/* M =Q 4 isa
Banach space whose dual space can be identified with .#. Under this identification
the pairing between M and Q  is given by the bilinear functional (T,[L]) =
t(TL), Te #,|L)€ Q, where, as usual, we write [L} for the coset in Q 4, of
an element L € €,(X).

Henceforth in these lectures we will routinely make the identification of Q%
and .# without further discussion.

The following theorem is frequently used in what follows. For a proof, see [16,
§2). -

THEOREM 1.20. If 4 is a linear manifold in L(X), then H is weak *-closed if
and only if # intersects the closed unit ball in (X)) in a weak*-closed set. If W
is weak*-closed, then the weak™ topology that accrues to # as the dual space of
Q o coincides with the relative weak* topology that accrues to .4 as a subspace of
L(H). Furthermore, if A is weak*-closed, X is a separable complex Banach
space, and ®: X* — M4 is a linear mapping, then ® is continuous when X* and N
are given their weak* topologies if and only if whenever { x, )., is a sequence in X*
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that is weak*-convergent 10 0, then {®(x,)} is weak* convergent to O in H.
Finally. if ® is weak* continuous and has range weak® dense in M, then there
exists a bounded, one-to-one, linear map ¢: Q 4 — X such that ® = ¢*, and if ®
has trivial kernel and norm-closed range, then ®(X*)=.#, ® is a weak*
homeomorphism of X* onto M, and ¢: Q 4 — X is invertible.

We shall also need frequently in what follows the concept of the absolutely
convex hull of a set E in a complex vector space X. The set E is said to be
balanced if \E c E for all complex numbers A satisfying |A}| < 1. The absolutely
convex hull of E, denoted by aco( E), is the smallest convex and balanced set
containing E. Alternatively it is the collection of all linear combinations a,x; *
+ -+ +a,x,of vectors x, -+, X, in E such that jay| + -+ +]|a,| < 1.1f Xisa
Banach space, then the closed absolutely convex hull of E, denoted by aco( E), is
the norm-closure of aco(E). The following proposition, whose proof may be
found in [17, Proposition 2.2}, will be quite useful later.

¥ «opOSITION 1.21. Let X be a complex Banach space, let M be a positive
s er, and let E be a subset of X. Then

lolt < M su;;!c»(x)l, ¢ € X*,
x€

if ...d only if aco( E) contains the closed ball of radius 1/M about the origin in X.
D particular, if E is a subset of the closed unit ball in X and

loll = suplo(x)], ¢ X*,
x€E

then aco(E) is the closed unit ball in X.



1. Simultaneous Systems of Equations
in the Predual of a Dual Algebra

Let X be any separable, complex Hilbert space, and let &/ C #(X") be a dual
algebra with predual Q. If x and y are vectors in X", then the associated
rank-one operator = ® y belongs to €,(X¢"), and, as noted above, we denote by
[x ®ylg,, or [x ® y] when there is no possibility of confusion, the image of
x ® y in Q. Since every operator L in €,(X¥') can be written as L = £, x, ® y,
for some square summable sequences {x;};2, and {y,}{2, in X" (with conver-
gence in the norm || ||,), it follows immediately that every element of Q, has the
form £2 ,{x, ® v]. The first new idea in the sequence of developments under
consideration is due to Scoit Brown {15], who showed that for certain subnormal
operators T, the dual algebra 2/, generated by 7' has the property that its
predual Qr = Q, consists entirely of elements of the form [L] = [x ® y] with x
and y nonzero. Brown’s remarkable new idea led to proofs, over the past five
years, that other preduals Q corresponding to T in various classes of operators
have this same *‘rank-one” structure, and a number of new invariant-subspace
theorems have resulted. The following definition will play a central role throughout
the book. Although the concepts introduced will mostly be studied in the context
of dual algebras, in several places the more general setting of weak*-closed
subspaces is appropriate.

DEFINITION 2.01. Let # € £(X) be a weak*-closed subspace, and let n be
any cardinal number such that 1 < n < X,. Then .# will be said to have

property (A ,) provided every n X n system of simultaneous equations of the
form

(2a) [):,@}3] = [Lii]’ 0<i, j<n,

(where the [L,] are arbitrary but fixed elements from Q ,) has a solution
(X, Yoci<m {¥i)oci<n consisting of a pair of sequences of vectors from X"
Furthermore if n € N and r is a fixed real number satisfying r > 1, thena
weak *-closed subspace # C £(X') (with property A ) is said to have property
(A (r)) if for every s > r and every n X n array {{L,;;}}o<, < from Q ,, there
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exist sequences {X,}oc; < {Yj)oc,<n that satisly {2ua) and also satisfy the
following conditions:

1/2
bd<(s £ Medl) . osi<n

(28) e L2
bh<(s T Lll) . osi<n
Ogi<n

Finally, a weak*-closed subspace .# C £(X") has property (A x (1)) (for some
real r > 1) if for every s> r and every array {[L, ]} ., from Q, with
summable rows and columns, there exist sequences {x,}{%, and { y;}72, from ¥’
that satisfy (2a) and (28) (with n = 8 ). (Note that it is not immediate that a
dual algebra with property (A (r)) has property (A ), but this is proved in
Theorem 3.7.)

DEFINITION 2.02. If # C £ (X) is a weak*-closed subspace and n is a positive
integer, then .# will be said to have property (A, ,,) if every [L] in Q_, can be
written in the form

(2v) (L]= E [x;®y]

i1 .
for certain sequences of vectors {(x,,...,x,} and {y,....,y,)} (depending on’
(L]). If # has property (A, ,,), r>1, and- for every s > r, the sequences
{x;5...,x,} and {y,,..., y,) satisfying (2v) can also be chosen to satisfy

(28) S el <l £l < siLML

i=1 i=1
then .# will be said to have property (A, ,,(r)).

It is obvious that the properties in the two-way infinite sequence

(- (AL (AR) (A)DL(AL),. (AL, (A))

become successively stronger as one moves to the right in the sequence, and it is
also obvious that all of these properties, along with the properties (A (r)), are
unitary invariants for dual algebras.

EXAMPLE 2.03. It is clear that () does not have any of the properties
(A, ,,). Furthermore, the commutative dual algebra o C Z(#® #°) in Example
1.10 does not have any of the properties (A, /,), and thus certainly has none of
the properties (A,). To see this, fix » € N, and let F be an operator of rank
n + 1 in 2Z(5#). We define a WOT-continuous linear functional ¢, on & by
setting ¢(A) = tr( FT'), where '

AT
4= (0 A )



EQUATIONS i THE PREDUAL: OF A DUAL ALGEBRA 9

(and T € .#). Since .# is the kernel of a weak* continuous linear functional on
ZL(5) that is not WOT-continuous (cf. Example 1.10), .# is WOT-dense in
Z£(¢") ({13, Problem 140]). If one supposes that &/ has property (A, ), then
there exist vectors %,,..., X,and 7, ..., ¥, in H'®H such that

¢p(A) = L (A4%.3). Aed,
i=1 ‘
and a short calculation leads to the contradiction that F has rank less than or
equal to n. Thus the example is established.

Certain elementary consequences result when a dual algebra has one of the
properties (A ).

PROPOSITION 2.04, If # is any weak *-closed subspace with property (A ) for
some 1 < n < 8, [resp., property (A, ,,) for some n € N}, and A" is any weak *-
closed subspace of #, then N has the same property. Furthermore, if # has
property (A (r)) for some 1 < n < 8, and r > 1 [resp., property (A, ,,(r)) for
some n € N and r > 1}, then A~ has the same property.

PrOOF. If {L] € Q ,, then [ L] induces a weak*-continuous linear functional ¢
on 4, and ¢ can be extended to a weak*-continuous linear functional ¢’ on .#
(cf. [13, Proposition 14.13]). Thus ¢’ is induced by an element [L’] in Q ,, and the
first two statements of the proposition follow easily. To prove the second two
statements, one must know that ¢’ may be chosen to have norm arbitrarily close
to that of ¢, and that this is the case is proved in [23, Lemma 2.4}.

As far as we know, the earliest mention in the literature of properties
(A, ...,(Ay,) is in [9-11}, and we know of no references to the properties
(A ,,), n > 1, although the idea is natural enough. On the other hand, properties
(A ) and (A ,(r)) have been studied somewhat, perhaps most generally in [23],
where they were called properties “D,” and “D,(r)”, respectively. Surely one of
the oldest results in this area is the following, half of which is proved in [26b] and
the other half of which follows from the polar decomposition for weak* continu-
ous linear functionals on a von Neumann algebra and [18, p. 233].

PROPOSITION 2.05. A von Neumann subalgebra of £( ) has property (A)) if
and only if it has a separating vector, and has property (A (1)) if it has property
(A)).

Here are some additional nice results about dual algebras with property (A,)
from [23].

PROPOSITION 2.055. A direct sum (or direct integral) of dual algebras, each of
which has property (A,(r)), also has property (A\(r)). If the direct sum of =
%@, of an infinite sequence of dual algebras ¥, has property (A,), and each
7, has some property (A (r,)), then ¢ has property (A (r)) for some fixedr > 1.
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THEOREM 2.06. If &/ C L (X') is a dual algebra and there exists a vecter x € X
which'is separating for s¢ and has the property that s/x is a (closed) subspace of
X, then &/ has property (A \(r)) for some r »1. Consequently if T acts on a
finite-dimensional space or is an algebraic operator in £ (), then o/, has
property (A (r)) for somer > 1.

ProposiTiON 2.065. If T € £(X') and satisfies a polynomial equation of degree
two, or is a two-normal operator, then s, has property (Al(y/—l_()— )). However, there
is u 4-normal operator that does not have property (A,).

The last statement of Proposition 2.065 is quite intriguing, and results from the
following important example and Proposition 2.055.

ExaMPLE 2.07 [23, Theorem 5.9]. Consider the sequence of operators

0 n 0 O
_lo 0o n2 o eN
T, o0 o 11" " ,
0 0 0 O

acting on C@, It follows from Proposition 2.06 that for each n € N, the dual
algebra E4 has property (A (r,)) for some », > 1. We show, however, that there
exists no fixed » such that o, has property (A (r)) for each n € N. Suppose, to
the contrary, that such an r exists. For n € N, consider the linear functional ¢,
on &, defined by setting ¢,((a;))) = ay; + ay, for (a;;) € 5. Obviously,
fid,t < 2 for all n. There exist vectors f,, g, in C® such that ¢,(A4) = (4f,, 8,)
for all A in ;.. Moreover, by using the proper scale factor, we may suppose that
WAl =1 and {ig,|l < (2 + &)r < 3r. By writing f, = (s,,1,,u,,0,) and g, =
(W, ,» Ju» Z,), and computing ¢,(TX) for k = 1,2, 3, we obtain, for n € N,

2 — 2
ntw, +n°ux,+uv,y,=n",

3

nuw, + nv,x, =0,

3 = n?
new, = n°,

2 2 2 2

s.0" +1e, 0 +ua +o I =1,
2 2 2 2

bwl” + 1" + 1yl +1z,|" < 9r2,

and these equations are easily seen not to be compatible for sufficiently large n.
Thus we have reached a contradiction.

The reader who has been paying close attention has perceived that we do not
know the answer to the following question.

ProOBLEM 2.075. If a dual algebra &/ C £(5) has property (A,), then does it
necessarily have property (A,(r)) for some r > 1?7 (Examples are¢ known of
surjective bilinear maps that are not open.) "

It is also important to point out that Olin and Thompson, making full use of
the picneering work of S. Brown in [15], proved in [27] the following.



