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EERAY

Preface

Like most laboratorians, you probably already have one or per-
haps two books on statistics at home lying on a bookshelf. Like
most, you have probably passed it by many times, selecting a spy
thriller instead; feeling guilty, of course, for such a transgression;
despoiling again the secret visions you have of mastering the
damned thing and confronting your colleagues with quick statis-
tical wit, wielding a piece of chalk like a rapier, reducing their
simple numerical inferences into reversed, inside out, and exactly
opposite truths.

While such motives may be less than honorable, you never-
theless. have my sympathy, for they reflect the frustration many of
us endure when confronted with the need to follow basic argu-
ments concerning quantitative data. Let me tell you immediately
that this little book will not convert a mathematical milquetoast
into a computerized paragon of statistical virtue.

Why, then, ought you to buy or borrow Statistics for the Clin-
ical Laboratory? In truth, there is really no earthly reason. There
are many good books around, and I refer to them frequently. The
best I have found for my purposes are listed at the end of Chapter
1, and to master any one of them would provide a very ample base
upon which to expand. I would at first eschew the average college
statistical text, as most are too concerned with mathematical
proof and justification. Frequently they state the equation, and
presume the way the statistic works flows naturally from that. (It
does, but net for most of us.)

Undoubtedly, most of you have already had a statistics work-
shop or two at regional or national meetings; some of you may
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vi Preface

even have taken and passed a required course in statistics, and
yet, somehow, something remains elusive, discomfiting.

Mostly, 1 think, the difficulty exists because you have not
come away from those episodes with any way to relate the #-test
and the F-test to reality, to your own experiences. In fact, they are
only convenient extensions of reality, and of our intuitions, merely
set to very specific and limited ground rules. Indeed, most of you
probably perform the essences of t-tests and F-tests 10 or 15 times
a day every time you decide that the run of tests must be valid if
the standards and controls look good, or the result must be cor-
rect if three different techs got the same value. It’s just that the
statistical test gives us some idea of the probability that our data
support the conclusion when we announce this acceptance or that
rejection of our hypothesis—but only if we and the data have
played by the rules of the statistic and its assumptions.

For most of us there is no holy grail of statistics which will
enlighten effortlessly. Select any book you will, but work with it:
think about it. Try to relate the statistics to what they are trying
to say. Lean back, close your eyes, try to see what the diagrams
and explanations are—5, 10, 15 times a day if necessary, at odd,
wasted moments.

Modesty prohibits me from telling of the circumstances dur-
ing which the standard error of the mean becamie clear to me, and
I dare not describe in any detail whatsoever my circumstances
when the central limit theorem made itself known to me. For each
it will be different, but worth it. For once you have internalized
and understood a statistical concept, however simple, you have
become less vulnerable to the random, less hostage to the exotic.

Why, then, buy or borrow this book? First, because I have
tried to introduce simple and basic statistics using explanations
that worked for me when I groped with them. Second, I have
borrowed generously from some good friends, and from many I
wish T knew as friends, to show how statistics help us to run better
laboratories and to produce more rational results from the clini-

cal laboratory.
Irwin M. Weisbrot, M.D.
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2 Statistics for the Clinical Laboratory

'This chapter introduces basic statistical concepts and de-
scribes those basic statistical tests used daily in the clinical labo-
ratory. Its aim is to assist the reader in gaining an intuitive feel
for the mechanisms of a few fundamental tests, their applications,
their limitations, and, most of all, their pitfalls if misunderstood
or misapplied. It is not meant to be .a complete statistical text or
compendium of all possible tests available. My professional statis-
tical colleagues agree that amateur statisticians will seldom err if
they use a few statistical tests they thoroughly understand, how-
ever inelegant these tests may be.

Should laboratory workers have access to expert statistical
consultation, they ought to design their experiments or processes
using the statistics they know prior to such consultation. Then, if
revision is suggested, they should request clarification contrasting
the opposing statistical approaches. Frequently, they will find that
there is no fundamental difference. Often they will have learned
something new and useful. Sometimes they will have to teach the
statistician about the vagaries and fickleness of biologic systems.

Remember, we do not use statistics because we are smart:
rather we use them because our minds cannot grasp large numer-
ical arrays or attributes and ‘produce abstract generalizations from
them. We must chip away, order them, and rank them before we
can describe their central tendencies, dispersions, and distribu-
tions, followed sometimes by a great leap toward inferences about
them. Nevertheless, with practice, rough guesses about the means
and distributions of the data can be made, a skill worth having to
avoid accepting ludicrous statistics.

Finally, stalistical nomenclature and notation often lack uni-
formity from one author or publisher to the next. Learning to
recognize the process will minimize this difficulty.

Significant Figures and Rounding Off

In-general, the original determination should contain only num-
bers that are analytically certain. For instance, ordinary serum
urea and glucose levels are reported to a whole number without a
decimal. The means and standard deviations of the series of such
“ determinations theoretically have an infinite number of signifi-
cant figures but ordingrily are reported to one or at most two

-



Basic Statistics -~ 3

figures beyond analytic capability. In fact, with modern calcula-
tors and, computers there is no difficulty in carrying 10 or 15
places, and it is wise to do the computations carrying as many
significant places as the computer can handle and rounding off
only in the final statement.

The traditional way of rounding off is based on the integer
following the last significant number. If the integer is 4 or less, it
is discarded, and no change is made in the preceding number. If
the integer is 6 or more, the preceding digit is rounded up by 1. If
the number is 5 and the last significant digit is odd, the number
is increased by 1, but if the digit to the left is even, it remains
unchanged. Zero is an even number. This produces small errors
that are not generally important.®

In the examples that follow it has sometimes been necessary
to round off values for ease of tabulation, but usimlly at least three
decimal places have been carried. Expect small rounding errors
to yield small differences in your calculations.

Some Basic Definitions

Descriptive statistics are concerned with the mean, range, varia-
bility, and distribution of a data set. .

Inferential statistics are concerned with the relationships
among different sets or samples of data. Is the mean of one set
greater than the other? Is the dispersion of one sample really
different from that of the second sample? Yes, we find a difference
between the means of the two samples, but is it real or significant?

Certain definitions are worth stating here and repeating as
necessary in the discussion to follow. “

Population refers to the universe of values or attributes such
as all the fasting plasma glucose levels of all hospitalized patients
in all hospitals in the northeastern United States.

Sample refers to a portion or subset of a population such as
the fasting plasma glucose levels on ward CPS of Norwalk"Hospi-
tal in Connecticut. Even this could be considered a popula- e
tion in its own right, further stratified by age, gender, or other
factors.

Parameter describes a quantitative attribute of a population.

Statistic describes a quantitative attribute of a sample.

-~
ol

-~



4 Statistics for the Clinical Laboratory

PARAMETER STATISTIC
w (mu) Arithmetic mean X (%-bar)
' or average
o (sigma) Standard deviation s
A}
2(x— p) Variance =)
o2 = == () = —=——
n n-—-1
P Distributionof R Tt
"~ oVn ‘ means s/vVn
uw* 190 . 95% confidence SR E S
: interval

Don’t be concerned if these symbols are not very clear now.
Observe that parameters usually have Greek letters symbolizing
them, whereas statistics must usually be content with less elegant
Roman or italic characters. But as you make progress in your
statistical education you will realize that a slightly different test
format, with substantial difference in your resulting inference,
may depend upon whether your data are to be treated as pop-
ulation parameters or sample statistics. Return to this list after
reading the first few chapters and see if it doesn’'t make more
sense then.

Bias is commonly used with the followmg slightly different
meanings in the clinical laboratory;

1. The difference between two means, the mean difference.

2. The presence of nonrandom events, which make the sam-
pled population nonrepresentative of the target popula-
tion. Example: estimation of the average value of plasma

glucose in a mixed hospital population just as all the spec- |

imens from diabetic clinic arrive. Example: severe electri-
cal power fluctuations during the morning’s run for plasma
glucose while data on repeatability is being collected. Ex-
ample: preference of even overpdd in reading a burette.

3. Lack of accuracy.

- Random means unpredictable: no algorithm or formula can
predict the gext event. Having a rectangular distribution, all events
S ’appear equally probable.
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Measures of Central Tendency

The arithmetic average or mean (signified as %, pronounced
“x-bar”’) is the most useful and common method of describing
data (e.g., plasma glucose, body weight, intelligence). It may be

generalized as
1

X,

X

M

which tells you to sum the n number of individual values of x and
divide by n. The data are not grouped; the interval equals 1.
Consider the numbers in Column 1 of Table 1-1. The arith-
metic mean, £, is 9.61 mg/dl, and for Column 2 it is 9.54 mg/dl.
The numbers 9.61 and 9.54 do not appear as actual values; they
are idealized descriptors. *

Table 1-1. Serum Calcium Values (mg/dl)

DETERMI- DETERMI- DETERMI-
NATION 1 NATION 2 NATION 3

1 9.2 9.0 8.7

2 93 .92 89

3 95 9.3 9.3

4 9.6 94 96

- 5 9.6 9.6 9.6
: 6 9.6 96 9.7

7 9.7 9.6 9.9

8 9.8 9.8 9.9

9 99 99 99
10 99 100 10.0
2 96.1 954 95.5
x 9.61 . 954 9.55
s 0.2331 0.3169 0.4478
Median 9.6 9.6 9.6
Mode 9.6 9.6 99
Range 9.2-99 9.0-10.0 8.7-10
Central .

80% 9.3-9.9 9.2-99 8.9-99

Each column represents replicate determinations on one patient
serum. )

(Weisbrot IM: Basic"?&;tistics, quality control, normal values, and
comparison of methods. In Race GJ [ed]: Laboratory Medicine,
Vol 3, Chap 32, p 3. Philadelphia, J B Lippincott, 1983) :
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MEAN MEAN

A MODE B MEDIAN
MEDIAN MODE
UNIMODAL UNIMODAL
SYMMETRICAL ’ SKEWED

"Normal" or Gaussian

c MODE D
MEAN
MEDIAN
MODE

BIMODAL NO MODE
. Rectongular or
Random Distribution

Fig. 1-1. Typical distributions of data; many more are possible.

The median is the middle value or the 50th percentile value
when the data are rank ordered by magnitude. Half the data points
are above the half below the median. Calculation is not always as
straightforward as the arithmetic mean, nor can the median be
easily manipulated

The mode is the data point that occurs most frequently. In
both Columns 1 and 2 of Table 1-1, 9.6 is the mode. Data distri-
butions with one mode are unimodal (Fig. 1-1). Data may be bi-
modal or even polymodal or have no distinct mode at all. Al-
though the mode, like the median, is not easily manipulated, it is
graphically demonstrable. It may permit recognition of two or
more distinct populations, sometimes permitting the identifica-
tion of a normal and abnormal subset within the large population.

When the mean, median, and mode coincide, the data follow
a symmetric distribution of fundamental importance to statistical
concepts. ;

When data are very skewed, neither the mean nor the mode
may estimate central tendency well, although the median retains

its distinction. One approach is to use the geometric or the loga-

rithmic mean:



o

Basic Statistics 7

x—geom = V(xl)(xg(xﬂ e (xn)
(take the nth root of the product)

1
%0g = antilog - 3 log x;

(sum the log of each value, average them, take the antilog)" :

The log mean is simpler to calculate, especially with the small
calculators available today. Data requiring such manipulation are
not common in clinical chemistry laboratory work. They occur
mostly in determining lethal dose levels in pharmacology and in
dilution titers in clinical immunology.

* Consider a series of titers obtained on diluted serum—1:10, 1:20,

1:20, 1:40, 1:160—from which the mean is desired.
Converting to decimals, we have

0.1, 0.05, 0.05, 0.025, and 0.00625
The geometric mean for the series would be

V.1 X 0.05 x 0.05 x 0.025 x 0.00625 = ¥/3.9063 x 10 2

Because most pocket computers will raise to a power more readily
than they will extract unusual roots, and remembering that the
n'"root is the same as the 1/n" power, we have

(3.9063 x 107%)°2 = 0.032988 = 1:30.3

as the mean titer for the series.

Similarly, using the log formula, and remembering that mul-
tiplying a logarithm raises to an exponent and dividing a loga-
rithm yields a root, the result would be equal to the antilog of

0.2 2(-1 - 130103 - 1.30103 — 1.60206 — 2.20412)
: - = 0.032988 = 1:30.3

By comparison, the arithmetic average would be 1:21.6.

Measures of Dispersion

RANGE

One measure of how the data are distributed apound ¢ in rela-
tionship to the mean is range Fer Jinmstance, in'Golumn 1.of Table
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1-1 the calcium range is 9.2 t0 9.9 in ten replicates and 9.0 to 10.0
in Column 2. Experience tells us that the whole range of data
frequently includes values that are borderline or marginal and not
entirely representative. We could assume that the first and last
values are somehow suspect and we could determine a truncated
range. We could select the central 80% interval, discarding the
lower and upper 10% of values. This yields a range of 9.3 to 9.9
and 9.2 t0 9.9, respectively, for Columns 1 and 2.

Although useful, range is limited in describing the relation-
ships between the data and the mean, and, although it tells us
what the spread of the data was, it provides no formal way of
predicting what the dispersion is likely to be in the future. There
is no easily derived or easily used algorithm or parameter that
enables us to anticipate future data (provided, of course, no sys-
tem changes have occurred). Nor can we easily determine the
probability that the dispersion has changed during the next trial,
should the next range not be identical to the first.

MEAN DEVIATION

Mean deviation is the average amount each data point differs or
deviates from the mean. It is determined as the following:

n

or the sum of the absolute differences of each value from the mean,
disregarding the * sign, divided by n, or

E! .
n

z

The calcium values from Column 1 in Table 1-1 are again
listed in Table 1-2 to illustrate the following calculations.

Summing the absolute |x ~ x| values, we get 1.72. Dividing
by 10, the mean or average deviation becomes 0.17 mg of calcium
per deciliter. This statement seems to make sense upon inspection
of the original data because roughly half the calcium values are
within 0.17 mg of the mean. However, if the signs are retained
and the sum of x ~ # is taken, we find that the positive deviations
cancel the minus deviations and there is no deviation. Such mis-
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Table 1-2. Calculation of Mean Deviation and Standard
Deviation Data from Column 1, Table 1

X x~k |jx—% (x-=g)
92 -041 0.41 0.1681
93 -0.31 0.31 0.0961
95 --0.11 0.11 0.0121
9.6 -0.01 001 0.0001
9.6 --0.01 0.01 0.0601
9.6 -0.01 0.01 0.0001
9.7 0.09 0.09 0.0081
9.8 019 019 0.0361
99 .29 0.29 0.0841
9.9 029 029 0.0841

> 96.1 0.00 1.72 0.4890 = X(x — %)

x 9.61 000 0172

@ ’ 0_‘1_820 = 0.05433 = variance
s V0.05433 = 0.2331

(Weisbrot IM: Basic statistics, quality control, normal values, and
comparison of methods. In Race GJ [ed]: Laboratory Medicine,
Vol 3, Chap 32, p 4. Philadelphia, J B Lippincott, 1983)

constructions have appeared in respectable medical literature and
they remind us that when all else fails, one should look at the data.

Mean deviation has an efficiency of 0.88, meaning that an »
of 100 is required to yield as good an estimate of dispersion as can
be attained with an n of 88 used to calculate standard deviation.
Mean deviation was more widely used before the days of calcula-
tors and computers. It has many of the defects described for range
as a measure of dispersion, but it does give a single numerical
value. ,

To estimate standard’deviation, multiply mean deviation by
1.253 for large samples.?

STANDARD DEVIATION

Standard deviation, s, has become the principle estimator of dis-
persion because (1) the problem of negative differences is obviated



