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PREFACE

Significant progress has been made in such diverse areas as neural net-
works, classifier systems, adaptive signal processing, and nonlinear predic-
tion theory in recent years, all of which pertain to a common goal of under-
standing the adaptive and computational capabilities of natural and artifi-
cial complex intelligent systems. The main driving forces behind the current
resurgence of interest in computational adaptation and self-organizational
techniques are the ready accessibility of inexpensive, fast massively parallel
computing devices which permits the modeling of large scale neural and
other adaptive networks suitable for practical real world applications, and
the realization, by researchers in artificial intelligent systems, of the need
to incorporate automatic learning capability into knowledge-based systems
in order to deal with the inherent imprecise, incomplete, and ever-changing
nature of the real world knowledge base.

The publication of this volume reflects the urgent need for a global
overview of this emerging interdisciplinary science. The extraordinarily
rapid growth of research effort in the areas of neural networks and genetic
algorithm in particular, with the attendant proliferation of research papers
and conference proceedings has increasingly forced the researchers to spe-
cialize in narrow domains. The speed and magnitude of private companies
jumping the bandwagon in their attempt to capitalize on the potential of
these powerful techniques for commercial applications have helped to gen-
erate the recent wave of public awareness in this new discipline, but at
the same time, also have helped to create on media hype surroundings the
promise of the new techniques that sometimes laymen and experts alike
“find it difficult” to judge whether real progress has been made by reading
the frequent press releases and conference papers.

To further compound the problem, along with the big explosion of
the R&D effort in both academia and the industrial and commercial sector,
came a minor explosion of a confusing array of new products and terminolo-
gies. In addition, by and large, this young discipline of learning intelligent
systems can still be regarded as a hacker’s paradise, with a hodge-podge list
of algorithms and tricks, the majorities of which are empirical and were de-
veloped with specific applications in mind. As the technology slowly inches
toward maturity, it becomes increasingly important to provide a compre-
hensive yet coherent treatment of the field.
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A major issue in the practical application of the new self-organization
techniques is the speed at which the intelligent systems can be trained for
each task. The learning speed not only depends on the specific system
architecture, the learning algorithm employed, but is also strongly depen-
dent on the particular task at hand which defines the shape of the error
(or objective) surface. Since the adaptation process of the intelligent sys-
tem can be essentially described as a kind of optimization process which
seeks to improve the performance (and hence reducing the error rate) of
the system with each new observation, it is reasonable to expect that the
complexity of the landscape (of the error surface) is a direct reflection of
the computational complexity of the task given.

The majority of the intelligent problems the systems are expected to
solve is most likely to be of the NP-complete type, or at the very least,
to lack efficient deterministic algorithm. For those tasks, the way learning
complexities scales as the task size is of great concern. However, the po-
tential complexities of the error landscape cannot shoulder all the blame
for the slowness of the present learning algorithms. Even tasks which are
simple from the algorithmic point of view oftentimes require unacceptably
long training sequences. The three dominant learning strategies, i.e., the
correlational (or Hebbian) learning, the gradient descent learning, and the
Darwinian strategy of random mutation and crossover, are simply not suffi-
ciently “guided” to solve the “ravine tracking” problem due to large eigen-
value spread of the Hessian (i.e., second order) matrix which frequently
occurs for large dimensional tasks, even though the mathematical problems
associated with the tasks are essentially linear (and therefore simple) in
nature.

Another major theoretical issue is the expressive power of the self-
modifying intelligent systems. One of the early attempts to build a learning
machine was the “perceptron” machine popularized by Rosenblatt. Unfor-
tunately the expressive power of the perceptron was put into question by
Minsky and Papert and was found to be inadequate even for certain classes
of “easy” problems. Modern neural net architectures are vastly more pow-
erful than their perceptron predecessors. Similarly, the nonneural adaptive
mapping network architectures presently being investigated are capable of
approximating a large class of smooth and /or hierarchical mappings. Even
more impressive are the classifier systems of Holland, described in this vol-
ume, since the expressive power of such systems is fully equivalent to that
of a Turing machine. However, there seems to be a trade-off between ex-
pressive power and the speed of adaptation, as the more expressive systems
tend to have more complicated architectures.
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Perhaps the least understood aspect of the learning systems is the
capabilities of the systems to generalize from learned examples. Some of
the generalization capabilities of the adaptive mapping networks such as
the locally linear and higher order mappers of Farmer (this volume), the
default hierarchy net (also this volume), and the single layer perceptron
can be attributed either to either the smoothness hypothesis assumed by
these systems which allows explicit interpolation algorithms to be used for
generalization, or to the built-in hierarchical memory organization and the
sequential learning algorithm which favors generalization through hierarchy
formation. The generalization that seems to be provided by classifier sys-
tems and neural nets with hidden processing units is much more difficult to
comprehend.

For some investigators and industrial users, the hidden neural nets and
classifier systems hold a forbidding aura of deep mystery. A few people even
have gone so far as to claim this to be a major virtue of the systems and evi-
dence of the supposed superiority of the so-called “brain metaphor”. While
this assertion may delight neural modelers and thrill the public media, it
does nothing to clarify the matter. There is simply no substitute for a sound
mathematical investigation of the characteristics of neural generalization,
even if conducted in relatively circumscribed domains.

In order to partially address each of the above issues, we invited ac-
tive researchers who are leaders and pioneers in their respective fields to
contribute to this volume. Even though numerous research papers have al-
ready appeared in widely disparate forums, with the bulk being in the form
of conference and workshop proceedings, there has been no single volume
which provides access to state-of-the-art research in the broad discipline of
self-organizing intelligent systems. We have tried to include the applications
of one methodology in several, different domains as well as the applications
of distinct methodologies to the same problems so long as it is feasible. This
should allow the comparison of different methodologies and hence promote
cross-fertilization.

The book can be divided roughly into three almost equal parts. In
the first part, the papers selected are of a more general, mathematical na-
ture, and as such, they provide a mathematical introduction to the general
subject. The second part of the book comprises description and formula-
tion of various adaptive architectures, whereas the last part of the book
is mostly devoted to applications. Such division, however, is only approxi-
mate, since all papers selected for this volume are essentially self-contained,
each with its own architectural description, mathematical formulation, and
application results or suggestions.
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Throughout this volume, the aim was to provide the most up-to-date
account of the present status in learning intelligent system methodologies in
diverse areas, and to suggest directions for future research. If this book can
convey the excitement experienced by those active in this new discipline and
can provide stimulus to beginning readers to participate in the advancement
of the subject, then the purpose of this volume will be amply served.

The author would like to thank Dr. David K. Campbell, Director of
the Center for Nonlinear Studies at Los Alamos National Laboratory, for
suggesting this project to me and for his continuous support and encourag-
ment. I also wish to thank the editorial staff of World Scientific for their
valuable expert technical help.

Los Alamos
1988

Y. C. Lee
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MATHEMATICAL THEORY






Connectionist Learning
Through Gradient Following

Ronald J. Williams
College of Computer Science
Northeastern University
Boston, MA 02115

INTRODUCTION

Consider the two questions: (1) What are the processing principles, learned or
innate, used by the brain to compute a given sensorimotor or cognitive function, such
as visual recognition of one’s grandmother, auditory recognition of a familiar melody,
motor commands to control the swing of a bat at a 90 m.p.h. fastball, or a decision to
make a particular chess move? (2) What are the principles used by the brain to adapt
itself to meet the needs of the particular environment it finds itself in at any
particular stage of its existence, so that, for example, it can improve at any of the
above tasks?

One may seek answers to these questions for their own sake or as a means of
identifying techniques for use in artificial systems having similar capabilities.
Ultimately, the answers to these two difficult questions will depend on empirical
studies of the brain itself. In the meantime, however, one can try to approach them
by studying simplified formal models. The difficulty, of course, is to decide what
constitutes a valid model of processing in the brain, of various sensorimotor and
cognitive functions, and of adaptation and learning. Perhaps an even more
fundamental difficulty is to resolve the philosophical problem of what constitutes
processing principles, as opposed to details. Because of the wide latitude possible in
any of these areas, it is not surprising that a wide variety of approaches to these
questions have been investigated by various researchers.

There are those psychologists and artificial intelligence researchers who believe
that the principles of brain-like processing are best expressed in the language of
computational symbol manipulation (e.g., Newell, 1980)—at least for those specifically
high-level cognitive functions, as distinguished from the more low-level sensorimotor
functions. At another extreme are neurophysiologists, who would like to explain brain
functioning in terms of the biochemical details of synaptic communication and neural
cell growth.

Somewhere between these two extremes in the issue of what constitutes
processing principles versus mere details is the study of what are variously called

Preparation of this article was supported by the National Science Foundation under grant IRI-8703566.
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connectionist systems, parallel distributed processing networks, or artificial neural
systems. The unifying feature of these systems is that they consist of highly
interconnected networks of relatively simple processing units, the computational
properties of the system being a result of the collective dynamics of the network.
This approach is distinct from that of modeling biological neural networks because
the individual processing units are not constrained to match in any but the most
superficial way the details of biological neuron functioning. A common disclaimer is
to use the term neuron-like to describe the individual units and neurally inspired to
describe the resulting models.

There are many reasons why this approach is considered worthwhile for helping
to provide valuable insights into brain functioning as well as suggesting useful
approaches to the design of artificial systems having brain-like capabilities. Among
the attractive features of such networks are: (1) their high degree of parallelism, with
computational processing broadly distributed across possibly very many units; (2)
their powerful associative memory properties, including best-match generalization,
content addressability, and graceful degradation; and (3) their ability to rapidly
compute ‘‘near-optimal” solutions to highly constrained optimization problems.
These networks can form nonlinear mappings (such as Boolean functions) and are
often constructed to manifest interesting monlinear dynamics. Many of these
properties are explored and discussed in, e.g., Hinton and Anderson (1981), Hopfield
(1982), Hinton and Sejnowski (1983), Kohonen (1984), Feldman (1985), Hopfield and
Tank (1985), Rumelhart and McClelland (1986), and McClelland and Rumelhart
(1986).

This article will describe two particular approaches to arriving at answers to the
questions posed above which are appropriate to a connectionist view of brain-like
processing. In particular, we will examine two classes of learning algorithms for such
networks, where the term “learning” is intended to be interpreted quite generally as
something that can be applied either on-line, as in its usual sense, or off-line. Thus
the learning algorithms to be described here may be thought of as possible answers to
the second question posed above, or, alternatively, as automated techniques for
proposing candidate answers to the first question.

The learning algorithms considered here are appropriate to two particular
formalizations of the learning problem for a connectionist system. While these two
paradigms are quite different and make different assumptions about the nature of the
computation performed by the units in the net, the common thread is that algorithms
for each case can be derived mathematically by first formulating the learning problem
as an optimization problem and then using the simple but powerful principle of
stochastic hill-climbing in this criterion function. Specifically, algorithms are
presented here for each of these learning paradigms which follow the gradient—
statistically, at least—of appropriate performance measures and have the further
important property of being implementable locally.



CONNECTIONIST SYSTEMS

A connectionist system is simply a network of computational nodes, called units,
and a collection of one-way signal paths, or connections, between them. It is assumed
that this network interacts with an environment, so that some of the units, called
input units, receive signals from the environment, and other units, called output units,
transmit signals to the environment. In general, there may be units in the network
which are neither input nor output units, and these are called hidden units. Hidden
units provide a particular challenge for certain types of learning task because neither
their actual or desired states are specified by the particular task.

There are a variety of assumptions which can be made concerning the nature of
the computation performed by the individual units within a connectionist network.
Each urnit computes an output signal as some function of that unit’s several input
signals, and these input signals are themselves either equal to the outputs of units in
the net or signals received from the environment. In general, these input and output
signals are time-varying, but in certain restricted cases it may not be necessary to
make this time dependence explicit. Input and output values of units in the net may
be assumed to be discrete (Hopfield, 1982; Hinton & Sejnowski, 1983; Rosenblatt,
1962; Barto & Anderson, 1985) or continuous (Hopfield & Tank, 1885; Kohonen, 1984;
Widrow & Hofl, 1960; Rumelhart et al., 1986), and the input/output function of units
may be assumed to be deterministic (Hopfield, 1982; Hopfield & Tank, 1985; Kohonen,
1984; Rosenblatt, 1962; Widrow & Hoff, 1960; Rumelhart et al, 1986) or stochastic
(Hinton & Sejnowski, 1983; Ackley et al, 1985; Barto & Anderson, 1985). In
addition, when the time-varying nature of these signals propagating through the net
is important, time may be modeled as discrete (Ackley et al., 1985; Barto & Anderson,
1985; Rumelhart et al., 1986) or continuous (Hopfield & Tank, 1885; Kohonen, 1984),
with updating of owtput values performed synchronously (Barto & Anderson, 1985;
Rumelhart et al., 1986) or asynchronously (Hopfield, 1982; Hinton & Sejnowski, 1983;
Ackley et al, 1985). Still another point of variatior is whether the network is
assumed to have feedback loops (Hopfield, 1982; Hopfield & Tank, 1985; Hinton &
Sejnowski, 1983; Kohonen, 1984, Ackley et al., 1985) or be acyclic (Bartc & Anderson,
1985; Rumelhart et al., 1986).

Throughout all these variations is the common pair of assumptions, intended to
capture the idea expressed in describing the computation as neurom-lkike, that: (1)
signals transmitted along the connections are (time-varying) scalars; and (2) the
computation performed at each unit is relatively simple. This second assumption is
vague, but intended to rule out, for example, sophisticated encoding/decoding
schemes as would be used for communication between two digital computing devices.
Weighted analog summation combined with some simple nonlinearity is a typical
example of a computation which is considered to satisfy this second eriterion. Below
we will consider some specific examples of computational units for connectionist
networks.



LEARNING

There are a number of possible formulations of the learning problem for a
connectionist system. The two particular learning paradigms of interest in this article
are supervised learning and associative reinforcement learning, both of which involve
learning on the basis of experience with a finite set of examples. The main distinction
between these is the nature of the feedback provided to the system in the two cases.
Figures 1 and 2 illustrate networks facing the two types of learning problem. For
supervised learning the system is presented with the desired output for each training
instance, while for reinforcement learning the system produces a response which is
then evaluated using a scalar value indicating the appropriateness of the response.
The objective in the supervised learning problem is to find network parameters which
minimize some measure of the difference between actual and desired response, while
the objective in the associative reinforcement learning problem is to find network
parameters maximizing some function of the evaluation signal. Since the training
examples for supervised learning consist of input/desired-output pairs, supervised
learning might also be thought of as storage of such pairs (albeit in a way designed to
permit efficient retrieval and generalization).

It is interesting to note that while there is a long history of attempts to develop
what have been called self-organizing procedures for connectionist networks, it is only
recently that certain obstacles faced by earlier approaches have been satisfactorily
overcome. In particular, a major difficulty for the supervised learning problem has
been in devising learning algorithms capable of providing effective adjustment of the
parameters associated with hidden units in the network. For this reason, earlier
research efforts (e.g., Rosenblatt, 1962; Widrow & Hoff, 1960) generally contented
themselves with restricting learning in such networks to certain limited portions
which excluded the hidden units.

It should be noted that other formulations of the learning problem are possible.
One leading competitor in connectionist circles to those discussed here is that of
unsupervised learning, in which learning occurs in the absence of any performance
feedback. In this paradigm, the objective is for the metwork to discover statistical
regularities or clusters in the stream of input patterns. Although we do not consider
such learning procedures here, it s worth pointing out why such techniques have been
(and continue to be} of interest. One reason is that, until fairly recently, there
appeared to be no alternative for training the hidden units in multilayer nets in
supervised or associative reinforcermnent learning tasks. By not depending on
performance feedback of any sort, such techniques allow the independent seli-
organization of individual portions (typically single layers) of a network. Of course,
there can thus be no assurance that the resulting performance is desirable (much less
optimal) for a given task. With the recent development of promising algorithms for
supervised and associative reinforcement learning im multilayer networks (Ackley,
Hinton, & Sejnowski, 1985; Barto & Amandan, 1985; Rumelhart, Hinton, & Williams,
1986), the importance of this use for unsupervised learning procedures has diminished.
Another source of the appeal of such procedures is their simplicity and biological



plausibility. Much of the work of Grossberg (e.g., 1876} makes use of this class of
algorithm, and Kohonen (1984) has demonstrated some interesting properties of
certain algorithms of this type. Discussion of this general approach to learning may
be found in Rumelhart and Zipser (1985).

The specific algorithms to be described here together with their gradient-
following properties are the back-propagation algorithm (Rumelhart, Hinton, &
Williams, 1986; Parker, 1982, 1985; Werbos, 1974) for supervised learning in networks
of deterministic units and the REINFORCE class of algorithms (Williams, 1986, 1987)
for associative reinforcement learning in networks of stochastic units. These latter
algorithms are closely related to that investigated by Barto and Anderson (1985).
Another recently developed stochastic hill-climbing algorithm which will not be
discussed here is the Boltzmann machine learning algorithm of Ackley, Hinton, &
Sejnowski (1985).

Supervised Learning vs. Associative Reinforcement Learning

Since this article discusses two different formulations of the learning problem
and describes algorithms for each, it is useful to clarify the distinctions between the
two and discuss briefly the question of their appropriateness.

In the associative reinforcement learning paradigm a network and its training
environment interact in the following manner: The network receives a time-varying
vector of inputs from the environment and sends a time-varying vector of outputs
(also called actions) to the environment. In addition, it receives a time-varying scalar
signal, called reinforcement, from the environment. The objective of learning is for
the network to try to maximize some function of this reinforcement signal, such as the
expectation of its value on the upcoming time step or the expectation of some integral
of its values over all future time, as appropriate for the particalar task. The precise
nature of the computation of reinforcement by the enviromment can be anything
appropriate for the particelar problem and is assumed to be unknown to the learning
system. In general, it is some function, deterministic or stochastic, of the input
patterns produced by the environment and the output patterns it receives from the
network. Figure 1 depicts the interaction between a network and its environment in
an associative reinforcement learning situation.

This formulation should be contrasted with the supervised learning paradigm, in
which the network receives a time-varying veetor signal, indicating desired output,
from the environment, rather than the scalar reinforcement signal, and the objective
is for the network’s output to match the desired output as closély as possible. This
distinction is sometimes summarized by saying that the feedback provided to the
network is instructive in the case of supervised learning and evaluative in the case of
reinforcement learning. Figure 2 depicts the interaction between a network and its
environment in a supervised learning situation.

We do not concern ourselves here with which is the more appropriate
formalization in general, but simply note that each seems to have its place. The idea
of matching a specified output pattern seems appropriate for certain problems dealing



Environment

Reinforcement

Input

Figure 1. A connectionist network amd its training emvironment for the associative reinforcement
learning problem. The precise eperation of this system consists of the following four phases:

1. The enviromment picks an input pattern for the metwork randomly {the distribution of which is
assumed to be imdependent of prior events within the network /environment system).

2. As the input pattern to each unit bevomes available, it computes its output. Thus “activation”
passes through the network from the input side to the output side.

3. After all the mnits at the output side of the network have computed their cutputs the environment
evaluates the result as a (possibly stochastic) function of the given input and output patterns.

4. Each unit changes its intermal parameters according to some specified function of the current value
of those parameters, the input it Teceived, the output it produced, and the environment’s evaluation.
The precise manner in which the evaluation, ar reinforcement, signal is msed by the individual units
depends on the learning algorithm to be applied. In the simplest case, the reinforcement signal is
simply broadcast to all units, but the use of additional units or interoonnections designed to help in
the learning process is also possible.



