Computer Science

and Applied Mathematics

- COMPUTABILITY,
COMPLEXITY,

AND LANGUAGES

FUNDAMENTALS OF THEORETICAL
COMPUTER SCIENCE
~ Martin D. Davis and Elaine J. Weyuker

3

Fpo
2

‘Computability,
Complexity,
and Languages

Fundamentals of Theoretical
Computer Science

Martin D. Davis
Elaine J. Weyuker

Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

New York, New York

@ 1983

ACADEMIC PRESS

A Subsidiary of Harcourt Brace Jovanovi
New York London
Paris San Diego San Franc

CorYRIGHT (© 1983, BY ACADEMIC PRESss, INC.

ALL RIGHTS RESERVED,

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by
ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London Nw1

Library of Congress Cataloging in Publication Data

Davis, Martin, Date
Computability, complexny, and languages

(Computer, stience and apphed mathemaucs)
Includes uk:lex - -
1. Machine theory 2 Computational complexity
3. Formal lanﬁuages I. Weyuker, Elaine J
IL. Title. I Serses
QA267.D38 1983 001 64°01 83-2727
ISBN 0—-12-206380-5

PRINTED IN THE UNITED STATES OF AMERICA

83 84 85 86 987654321

—

Preface

Theoretical computer science is the mathematical study of models of
computation. As such, it originated in the 1930s, well before the existence
of modern computers, in the work of the logicians Church, Godel,
Kleene, Post, and Turing. This early work has had a profound influence
on the practical and theoretical development of computer science. Not
only has the Turing-machine model proved basic for theory, but the work
of these pioneers presaged many aspects of computational practice that
are now commonplace and whose intellectual antecedents are typically
unknown to users. Included among these are the existence in principle of
all-purpose (or universal) digital computers, the concept of a program as a
list of instructions in a formal language, the possibility of interpretive
programs, the duality between software and hardware, and the represen-
tation of languages by formal structures based on productions. While the
spotlight in computer science has tended to fall on the truly breathtaking
technological advances that have been taking place, important work in the
foundations of the subject has continued as well. It is our purpose in
writing this book to provide an introduction to the various aspects of
theoretical computer science for undergraduate and graduate students
that is sufficiently comprehensive that the professional literature of trea-
tises and research papers will become accessible to our readers.

We are dealing with a very young field that is still finding itself. Com-
puter scientists have by no means been unanimous in judging which parts
of the subject will turn out to have enduring significance. In this situation,
fraught with peril for authors, we have attempted to select topics that
have already achieved a polished classic form, and that we believe will
play an important role in future research.

We have assumed that many of our readers will have had little experi-
ence with mathematical proof, but that almost all of them have had

xill

xiv . Preface

substantial programming experience. Thus the first chapter contains an
introduction to the use of proofs in mathematics in addition to the usual
explanation of terminology and notation. We then proceed to take advan-
tage of the reader’s background by developing computability theory in the
context of an extremely simple abstract programming language. By sys-
tematic use of a macro expansion technique, the surprising power of the
language is demonstrated. This culminates in a universal program, which
is written in all detail on a single page. By a series of simulations, we then
obtain the equivalence of various different formulations of computability,
including Turing’s. Our point of view with respect to these simulations is
that it should not be the reader’s responsibility, at this stage, to fill in the
details of vaguely sketched arguments, but rather that it is our responsibil-
ity as authors to arrange matters so that the simulations can be exhibited
simply, clearly, and completely.

This material, in various preliminary forms, has been used with under-
graduate and graduate students at New York University, Brooklyn Col-
lege, The Scuola Matematica Interuniversitaria—Perugia, The University
of California—Berkeley, The University of California—Santa Barbara,
and Worcester Polytechnic Institute. '

Although it has been our practice to cover the material from the sec-
ond part of the book on formal languages after the first part, the chapters
on regular and on context-free languages can be read immediately after
Chapter 1. The Chomsky-Schiitzenberger representation theorem for
context-free languages is used to develop their relation to pushdown au-
tomata in a way that we believe is clarifying. Part 3 is an exposition of the
aspects of logic that we think are important for computer science and can
also be read immediately following Chapter 1. Each of the three chapters
of Part 4 introduces an important theory of computational complexity,
concluding with the theory of NP-completeness. Part 5 contains an intro-
duction to advanced recursion theory, includes a number of topics that
have had fruitful analogs in the theory of polynomial-time computability,
and concludes with an introduction to priority constructions for recur-
sively enumerable Turing degrees. The anomalies revealed by these con-
structions must be taken into account in efforts to understand the underly-
ing nature of algorithms, even though there is no reason to believe that the
specific algorithms generated will prove useful in practice.

Because many of the chapters are independent of one another, this
book can be used in various ways. There is more than enough material for
a full-year course at the graduate level ontheory of computation. We have
used the unstarred sections of Chapters 1-6 and Chapter 8 in a successful
one-semester junior-level course, Introduction to Theory of Computa-
tion, at New York University. A course on finite automata and formal

Preface XV

languages could be based on Chapters 1, 8, and 9. A semester or quarter
course on logic for computer scientists could be based on selections from
Parts 1 and 3. Many other arrangements and courses are possible, as
should be apparent from the dependency graph, which follows. It is our
hope, however, that this book will help readers to see theoretical com-
puter science not as a fragmented list of discrete topics, but rather as a
unified subject drawing on powerful mathematical methods and on intui-
tions derived from experience with computing technology to give valuable
insights into a vital new area of human knowledge.

Note to the Reader

Many readers will wish to begin with Chapter 2, using the material of
Chapter 1 for reference as required. Readers who enjoy skipping around
will find the dependency graph useful.

A reference to Theorem 8.1 is to Theorem 8.1 of the chapter in which
the reference is made. When a reference is to a theorem in another chap-
ter, the chapter is specified. The same system is used in referring to
numbered formulas and to exercises.

Acknowledgments

It is a pleasure to acknowledge the help we have received. Charlene
Herring, Debbie Herring, Barry Jacobs, and Joseph Miller made their
student classroom notes available to us. James Cox, Keith Harrow, Steve
Henkind, Karen Lemone, Colm O’Dunlaing, and James Robinett pro-
vided helpful comments and corrections. Stewart Weiss was kind enough
to redraw one of the figures. Thomas Ostrand, Norman Shulman, Louis
Salkind, Ron Sigal, Patricia Teller, and Elia Weixelbaum were particu-
larly generous with their time, and devoted many hours to helping us. We
are especially grateful to them.

Dependency Graph :

Chapter 1
Preliminaries

Chapter 8 Chapter 2 Chapter 11
Regular Languages Programs and . Propositional Calculus

Computable Functions

. Chapter 8 Chapter 3
Context-Free Languages Primitive

Recursive Functions|

Chapter 4
A Universal Program

Chapter 16 Chapter 5
o . Chapter 14
Classifying Unsoivable Calculations on
Problems Strings Abstract Complexity
Chapter 17 Chapter 15
Degrees of Unsolvability T (_:ha:::;ﬁ { Polynomial-Time
and Post’s Probl uring ines Compuzability

Chapter 7
Processes and Grammars

Chapter 13
Loop Programs | * " °

Chapter 10 [_
R o Chapte
Conltext Sensitive Quantification TI oy

A solid line between two chapters indicates the dependence of the
unstarred sections of the higher numbered chapter on the unstarred sec-
tions of the lower numbered chapter. An asterisk next to a solid line
indicates that knowledge of the starred sections of the lower numbered
chapter is also assumed. A dotted line shows that knowledge of the un-
starred sections of the lower numbered chapter is assumed for the starred
sections of the higher numbered chapter.

Contents

Preface
. Acknowledgments
Dependency Graph

Chapter 1 Preliminaries

. Sets and n-tuples

. Functions

. Alphabets and Strings

. Predicates

Quantifiers

. Proof by Contradiction
. Mathematical Induction

NOAULE WN -

Part 1 COMPUTABILITY

Chapter 2 Programs and Computable Functions

1. A Programming Language

2. Some Examples of Programs
3. Syntax

4. Computable Functions

5. More about Macros

Chapter 3 Primitive Recursive Functions

s

1. Composition
2. Recursion

O NN -

32
33

viii

L IR NV R A)

. PRC Classes

. Some Primitive Recursive Functions

. Primitive Recursive Predicates

. Iterated Operations and Bounded Quantifiers

Minimalization

. Pairing Functions and Goédel Numbers

Chapter 4 A Universal Program

. Coding Programs by Numbers
. The Halting Problem

. Universality

. Recursively Enumerable Sets
. The Parameter Theorem

. The Recursion Theorem

. Rice’s Theorem

Chapter 5 Calculations on Strings

. Numerical Representation of Strings

A Programming Language for String Computations
The Languages ¥ and &, .
Post-Turing Programs

. Simuldtion of ¢, in §
. Simuldtion of J in ¥

[22
Chapter 6 Turing Machines

1. Internal States

2. A Universal Turing Machine]
3. The Languages Accepted by Turing Machings
4.
h)
6

The Halting Problem for Turing Machines

. Nondeterministic Turing Machines
. Variations on the Turing Machine Theme

Chapter 7 Processes and Grammars

N o—

[~ BV I)

. Semi-Thue Processes
. Simulation of Nondeterministic Turing Machines by Semi-Thue

Processes

. Unsolvable Word Problems

. Post’s Correspondence Problem

. Grammars

. Some Unsolvable Problems Concerning Grammars

Contents

34
36
39
41
43
47

51
53
55

67

70
77
81
82
88
92

97
103
104
107
108
111

118

119
124
128
133
137

Contents

7. Recursion and Minimalization
*8. Normal Processes
*9. A Non-R.E. Set

Part 2 GRAMMARS AND AUTOMATA

Chapter 8 Regular Languages

. Finite Automata

. Nondeterministic Finite Automata

. Additional Examples

. Closure Properties

. Kleene's Theorem

. The Pumping Lemma and Its Applications
. The Myhill-Nerode Theorem

NN LA W -

Chapter 9 Context-Free Languages

. Context-Free Grammars and Their Derivation Trees
. Regular Grammars

. Chomsky Normal Form

. Bar-Hillel's Pumping Lemma

. Closure Properties

. Solvable and Unsolvable Probiems

. Bracket Languages

. Pushdown Automata

. Compilers and Formal Languages

’

*+

OO0 AL W N -

Chapter 10 Context-Sensitive Languages

1. The Chomsky Hierarchy
2. Linear Bounded Automata
3. Closure Properties

Part 3 LOGIC

Chapter 11 Propositional Calculus

1. Formulas and Assignments
2. Tautological Inference

ix

138
142
145

149
153
156
158
161
166
168

171
181
185
187
190
195
199

215

218
220
226

231
235

. Normal Forms

. The Davis-Putnam Rules

Minimal Unsatisfiability and Subsumption
. Resolution

. The Compactness Theorem

NN e W

Chapter 12 Quantification Theory

. The Language of Predicate Logic
. Semantics

Logical Consequence

. Herbrand's Theorem

. Unification

. Compactness and Countability

. Godel's Incompleteness Theorem

* »

R Y N

Part4 COMPLEXITY

Chapter 13 Loop Programs

1. The Language L and Primitive Recursive Functions
2. Running Time
3. ¥, as a Hierarchy
4. A Converse to the Bounding Theorem
*5. Doing without Branch Instructions

Chapter 14 Abstract Complexity

1. The Blum Axioms

2. The Gap Theorem

3. Preiiminary Form of the Speedup Theorem
4. The Speedup Theorem Concluded

Chapter 15 Polynomial-Time Computability

1. Rates of Growth

2. P versus NP

3. Cook’s Theorem

4. Other NP-Complete Problems

. Unsolvability of the Satisfiabilit Problem in’ Predicate Logic

Contents

236
242
247
247
250

291
297
303

i

3
17
319
326

33
335

Contents

Part 5

UNSOLVABILITY

Chapter 16 Classifying Unsolvable Problems

1. Using Oracles

2. Relativization of Universality
3. Reducibility

4. Sets R.E. Relative to an Oracle
5.
6
7
8
9

The Arithmetic Hierarchy

. Post’s Theorem

. Classifying Some Unsolvable Problems
. Rice’s Theorem Revisited

. Recursive Permutations

Chapter 17 Degrees of Unsolvability and Post’s Problem

. Turing Degrees

The Kleene~Post Theorem

. Creative Sets—Myhill’s Theorem
. Simple Sets—Dekker’s Theorem
. Sacks's Splitting Theorem

. The Priority Method

Suggestions for Further Reading

Index

353
356
362
366
370
n
378

385

389
392
396
403
408
410

417

419

CHAPTER 1

Preliminaries

1._ Sets and n-tuples

We shall often be dealing with sets of objects of some definite kind.
Thmkmg of a collection of entities.as a set simply amounts to a decision to
regard the whole collection as a single object. We shall use the word class
as synonymous with set. In particular we write N for the set of natural
numbers 0, 1,2, 3, In this book the word number will always mean natural
number except in contexts where the contrary is explicitly stated.

We write

aes

to mean that a belongs to S or, equivalently, is a member of the set S, and
a¢s

to mean that a does not belong to S. It is useful to speak of the empty set,
written (&, which has no members. The equation R = §, where R and § are
sets, means that R and S are identical as sets, that is, that they have exactly
the same members. We write R < S and speak of R as a subset of S to mean
that every element of R is also an element of S. Thus, R = S if and only if
R & Sand S = R. Note also that for any set R, @& < Rand R & R. We write
R c S to indicate that R = S but R # S. In this case R is called a proper
subset of S. If R and S are sets, we write R U S for the union of R and §, that
is the collection of all objects which are members of either R or § or both.
R N S, the intersection of R and S, is the set of all objects which belong to
both R and S. R — S, the set of all objects which belong to R and do not
belong to S, is the difference between R and S. S may contain objects
not in R. Thus R — S = R — (R n §). Often we will be working in contexts
where all sets being considered are subsets of some fixed set D (sometimes
called a domain or a universe). In such a case we write § for D — §, and call

1

2 Chapter 1 Preliminaries

S the complement of S. Most frequently we shall be writing 3 for N — S. The
De Morgan identities
RuUuS=RnS,

RAS=RuS%

are very useful; they are easy to check and any reader not already familiar
with them should do so. We write

{a,a5,...,a,}

for the set consisting of the n objects ay, a,, . . ., a,. Sets which can be written
in this form as well as the empty set are called finite. Sets which are not finite,
e.g., N, are called infinite. It should be carefully noted that a and {a} are not
the same thing. In particular, a € § is true if and only if {a} < S. Since two
sets are equal if and only if they have the same members, it follows that, for
example, {a, b, ¢} = {a, ¢, b} = {b, a, c}. That is, the order m which we may
choose to write the members of a set is irrelevant. Where order is important,
we speak instead of an n-tuple or a list. We write n-tuples usmg parentheses
rather than curly braces:
‘ (a,,...,a,).
Naturally, the elements making up an n-tuple need not be distinct. Thus
(4,1,4,2) is a 4-tuple. A 2-tuple is called an ordered pair and a 3-tuple is
called an ordered triple. Unlike the case for sets of one object, we do not
distinguish between the object a and the 1-tuple (a). The crucial property of
n-tuples is ’
(a;,ay,....a,) = (b, by, ..., b,)
if and only 1]
= b,, a, = b,, e, and a, = b,.

IS, SZ, ..., S, are given sets, then we write §; x S, x -+ x S, for the
set of all n-tuples (a;,4a,,...,4q,) such that a, €S,,a,€8;,...,8,€S5,.
S, x §, x --- x S, is sometimes called the Cartesian product of §,,§,,...,S,.
In case S, =S, =---=8§,=S we write §" for the Cartesian product
S; xS, x---x8§,.

2. Functions

Functions play an important role in virtually every branch of pufe and
applied mathematics. We may define a function simply as a set f, all of whose
members are ordered pairs and which has the special property

(a,b)e fand (a,c)ef implies b =c.

Alphabets and Strings 3

However, intuitively it is more helpful to think-of the pairs listed as the rows
of a table. For f a function, one writes f(a) = b to mean that (g, b) € f; the
definition of function ensures that for each a there can be at most one such b.
The set of all a such that (a, b) € f for some b is called the domain of f. The set
of all f(a) for a in the domain of f is called the range of f.

As an example, let f be the set of ordered pairs (n, n?) for ne N. Then, for
each ne N, f(n) = n>. The domain of f is N. The range of f is the set of
perfect squares.

Functions f are often specified by algorithms which provide procedures
for obtaining f(a) from a. This method of specifying furictions is particularly
important in computer science. However, as we shall see in Chapter 4, it is
quite possible to possess an algorithm which specifies a function without
being able to tell which elements belong to its domain. This makes the notion
of a so-called partial function play a central role in computability theory.
A partial function on a set S is simply a function whose domain is a subset of
S. An example of a partial function on N is given by g(n) = \/;, where the
domain of g is the set of perfect squares. If f is a partial functionon § andae€s,
then we write f(a)] and say that f(a) is defined to indicate that a is in the
domain of f;if a is not in the domain of f, we write f(a)] and say that f(a)
is undefined. If a partial function on S has the domain . then it is called total.
Finally, we should mention that the empty set J is itself a function. Consid-
ered as a partial function on some set S, it is nowhere defined.

For a partial function f on a Cartesian product §; x §, x -+ X S,, we
write f(a,. ..., a,) rather than f((a,...., a,)). A partial function f on a set §"
is called an n-ary partial function on S, or a function of n variables on S. We
use unary and binary for l-ary and 2-ary, respectively. For n-ary partial
functions, we often write f(x,, ..., x,) instead of f as a way of showing ex-
plicitly that f is n-ary.

3. Alphabets and Strings

An alphabet is simply some finite nonempty set A of objects called
symbols. An n-tuple of symbols of 4 is called a word or a string on A. Instead
of writing a word as (a,, 4y, ..., d,) We write simply a,a, ---a,. If u =
a,a, - - - a,, then we say that n is the length of u and write |u| = n. We allow
a unique null word, written 0, of length 0. (The reason for using the same
symbol for the number zero and the null word will become clear in Chapter
5.)The set of all words on the alphabet A is written A*. Any subset of A* is
called a language on A or a language with alphabet A. We do not distinguish
between a symbol a € 4 and the word of length 1 consisting of that symbol.

4 Chapter 1 Preliminaries

If u, v e A*, then we write @@ for the wotd obtained by placing the string v
after the string u. For example, if 4 = {a, b, ¢}, u = bab, and v = caa, then

it = babcaa and i = caabab.

Where no confusion can result, we write uv instead of &d. It is obvious that
for all u,

u0 = Ou = u,
and that for all u, v, w, V
u(vw) = (uv)w.

Also, if either uv = uw or vu = wu, then v = w.
If u is a string, and ne N, n > 0, we write

u" = uu---u.
Ny e’
n

We also write 1% = 0. We use the square brackets to avoid confusion with
numerical exponentiation.

If ue A*, we write u® for u written backward; i.e., if u = a,a, - - - a,, for
ay,..., a,€ A, then u® = a,---aya,. Clearly, 0f = 0 and (u)® = v*u* for
u, ve A*

4. Predicates

By a predicate or a Boolean-valued function on a set S we mean a total
function P on S such that for each a € §, either

P(a) = TRUE or P(a) = FALSE,

where TRUE and FALSE are a pair of distinct objects called truth values. We
often say P(a) is true for P(a) = TRUE, and P(a) is false for P(a) = FALSE.
For our purposes it is useful to identify the truth values with specific numbers,
so we set

TRUE = 1 and FALSE = 0.

Thus, a predicate is a special kind of function with values in N. Predicates
on a set S are usually specified by expressions which become statements,
either true or false, when variables in the expression are replaced by symbols
designating fixed elements of S. Thus the expression

x<S5

