ADVANCES IN Immunology

EDITED BY

F. J. DIXON HENRY G. KUNKEL

VOLUME 15 1972

ADVANCES IN Immunology

EDITED BY

F. J. DIXON

Division of Experimental Pathology Scripps Clinic and Research Foundation La Jolla, Californià HENRY G. KUNKEL

The Rockefeller University New York, New York

COPYRIGHT © 1972, BY ACADEMIC PRESS, INC.

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 61-17057

PRINTED IN THE UNITED STATES OF AMERICA

PREFACE

Despite our very considerable information about antibodies and the immune process a number of striking gaps in our knowledge certainly remain. Perhaps foremost among these is the mechanism by which the diversity of antibodies is achieved. Immunologists remain divided into two highly divergent camps on this issue and those espousing the germ line theory appear almost as numerous as the so-called somatocists. The very significant developments regarding the structure of antibodies have failed to resolve the dispute. Many workers in the field now feel that the answer will come only through concerted studies at the cellular level. An understanding of the different types of lymphocytes and their differentiation appears essential. Volume 15 is replete with new information in this area.

In the first chapter Dr. David Katz and Dr. Baruj Benacerraf have summarized in a superb fashion the many lines of evidence concerning the interaction of B and T cells in the immune response. The regulatory effect of the T cells on B cell activity has clearly emerged as a dominant principle. The cooperative interaction between specific B and T cells and antigen is discussed at length and the evidence for distinct factors secreted by T cells which are capable of affecting B cell function is presented. The advantages of such a two-cell mechanism in terms of host defense mechanisms become apparent.

In the second chapter Dr. Emil Unanue deals with the other important cell involved in the immune response, the macrophage. He has contributed very significantly to our understanding of the role of this cell in the removal, processing, and presentation of antigen to the responding lymphoid cell. Various *in vitro* systems for studying the immune response are considered in detail and the significant role of the macrophage in most of these is apparent. Variations and contradictions of past studies, primarily because of the widely different antigens employed, are brought together so that a coherent picture emerges.

The chapter by Dr. Joseph Feldman covers a most timely subject, immunological enhancement. It is a phenomenon that has long been known but which has suddenly come to the fore with the appreciation that it has broad immunological significance ranging from effects on tumor growth to the privileged position of the fetus in the maternal environment. Dr. Feldman prefers the term "immunological blockade" in this broader setting and has given it specific meaning in terms of known

X PREFACE

antibodies and their effects on lymphocytes. Although considerable gaps remain in our knowledge of the exact types of antibodies involved and their specificity, the author has done much to dispel the mysterious aura that for so long has surrounded the enhancement phenomenon.

The fourth contribution, by Dr. David Gasser and Dr. Willys Silvers, presents in detail the subject of sex-linked or presumed sex-linked antigens. The intriguing transplantation phenomenon of specific rejection of certain male to female skin receives special consideration. Evidence is cited which supports the concept that this Y antigen is determined by a gene on the Y chromosome. However, it has not reached the status of the more numerous X-linked antigens which are also discussed. The authors avoid the intricate language that characterizes many reviews in transplantation immunology; this chapter should prove broadly enlightening.

In the final chapter Dr. Edward Franklin and Dr. Dorothea Zucker-Franklin present a very thorough review of the problem of amyloid and the recent exciting developments concerning the nature of the deposits. This very considerable clinical problem has intrigued immunologists for many years but always proved uniquely resistant to the many investigative efforts. It now appears that there are two distinct types of deposit. One of these clearly involves the variable region of immunoglobulin light chains. The other type is less well defined but appears to involve a totally different protein. Much of the controversy and confusion that have troubled most outside observers is resolved in this very timely review.

The constant cooperation and assistance of the publishers in the production of Volume 15 are most gratefully acknowledged.

HENRY G. KUNKEL FRANK J. DIXON

CONTENTS

List	of Contrib	UTORS													. vi
Pref	ACE .				,		. ,								. i
Con	TENTS OF PR	EVIOU	s Vo	LUM	ES			•	•	•					. x
The Resp	Regulatory conses to Ar David F	ntiger	1							в	Cell				
II.	Introduction Specific Cel Requirement of Humoral Nature of the	ls of t t of T Imm	the I wo I une	mmu Distir Resp	ne S net I	Syste: Lymp	m . ohoid	Cell	Typ	es in		Deve	lopn	nent	2 3 4
	Responses l Immunologi	oy B cal Sp	Cells ecifi	ity i	and	Prop	ertie	s of	Tar					٠.	23
VI	with Coope Mechanism	cation	Pne	nome	ena	C-11	T		, .			•	•	٠	28
VII	Suppressive	or ne	gmat	10n C	D. II. C⊸II.	Cen	runc	tion	by 1	l Cel	us .	•	•	٠	42
VIII	Functions of	f T a	ad B	Tym	unha	SOU	Anu	Douy	, 931	ntnes	IS .	. 1	•	•	62
V 111.	Phenomena		iu b	Lyn	ipnc			v агіо			notog	ical			-
IX.	Biological a			hvsio	i Iogi	eal S	ianif			+h.a	D		•	•	67
	Influence of	ТС	ells (n A	ntih	odv	Prod	notio	e or	uie	negi	nator	y		00
	References	Ĩ. U	0115 (<i>,</i> 11. 11		ouy		ueno.		•	•	•	•	•	82 85
		•	•	•	•	•	•	•	•	•	•	•	•	•	ಂ
The	Regulatory E. R. Uz			Ласг	oph	age	s in	Anti	gen	ic St	imul	ation	ı		
I.	Introduction														95
II.	Association	of Ma	crop	hage	-Bot	ind A	Antig	en w	ith 1	lmmı	moge	nicit	ν.	i	97
III.	Handling of	Antig	en b	y Ma	crop	ohage	es .								128
IV.	Macrophage	-Lym	phoc	yte (Con	tact									147
V.	Macrophages	s and	Adju	vants	s .									٠.	149
VI.			•												151
	References	•	•	•	•	•	•		•	•	•	•	٠		157
lmmı	nological E Јоѕерн I				A \$	Study	of	Bloc	king	g An	tibo	dies			•
ī	History .														
	Definitions		:	:	:	•	•		•	•	•	•	•	•	167

vi CONTENTS

III.	Components														170
	Immunologica														177
	Fetus as Hor												. 1		188
	Tolerance														190
	Theories .														191
	Prospects	i													204
, ,,,,,,	References	•	-												205
	rescrences	•	•	•	•	·									
<u></u>			1	e	c	ريا ۾ ا	۸ لــ	ntia	. n.						
Gene	etics and Imm								ens						
	DAVID L.	Gass	ER A	ND V	VILL	ys K.	Silv	ERS							
I.	Introduction														215
II.	The Y Antiger	n in	Mice												216
III.	The Xg Blood	l Gr	oup]	Locu	s in	Man					•				236
	Other Sex-Lin													•	238
	Summary														242
	References	Ĭ.													243
C	ent Concepts	~ t	A	امنط											
Curr	•		•			_		_							
	EDWARD (C. Fi	RANK	LIN A	AND	Dorc	THE	A Zu	CKER	-FRA	NKLI	N			
T	Introduction														249
	General Appr														253
	Morphologica														255
IV	Morphologica	l Bi	ocher	nical	Ph	vsicoo	hemi	ical.	and	Antig	zenic	Prot	ertie	s	
* ' '	of Amyloid F														264
v	Speculations														294
•	References	011 -						,				_			299
	References	•	•	•	•	•	•	•	•	•	•	•	•	-	
Auti	OR INDEX .					.•				•	•				305
Subj	ECT INDEX .														327

LIST OF CONTRIBUTORS

Numbers in parentheses indicate the pages on which the authors' contributions begin.

- Baruj Benacerraf, Department of Pathology, Harvard Medical School, Boston, Massachusetts (1)
- JOSEPH D. FELDMAN, Department of Experimental Pathology, Scripps Clinic and Research Foundation, La Jolla, California (167)
- EDWARD C. FRANKLIN, Rheumatic Diseases Study Group, Department of Medicine, New York University Medical Center, New York, New York (249)
- DAVID L. GASSER, Immunobiology Research Unit, Departments of Medical Genetics and Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania (215)
- David H. Katz, Department of Pathology, Harvard Medical School, Boston, Massachusetts (1)
- Willys K. Silvers, Immunobiology Research Unit, Departments of Medical Genetics and Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania (215)
- E. R. Unanue, Department of Pathology, Harvard Medical School, Boston, Massachusetts (95)
- DOROTHEA ZUCKER-FRANKLIN, Rheumatic Diseases Study Group, Department of Medicine, New York University Medical Center, New York, New York (249)

Contents of Previous Volumes

Volume 1

Transplantation Immunity and Tolerance
M. Hašek, A. Lengerová, and T. Hraba

Immunological Tolerance of Nonliving Antigens
RICHARD T. SMITH

Functions of the Complement System
ABRAHAM G. OSLER

In Vitro Studies of the Antibody Response
ABRAM B. STAVITSKY

Duration of Immunity in Virus Diseases
I. H. HALE

Fate and Biological Action of Antigen-Antibody Complexes
WILLIAM O. WEIGLE

Delayed Hypersensitivity to Simple Protein Antigens
P. G. H. GELL AND B. BENACERRAF

The Antigenic Structure of Tumors
P. A. Gorer

AUTHOR INDEX-SUBJECT INDEX

Volume 2

Immunologic Specificity and Molecular Structure Fred Karush

Heterogeneity of γ-Globulins JOHN L. FAHEY

The Immunological Significance of the Thymus
J. F. A. P. MILLER, A. H. E. MARSHALL, AND R. G. WHITE

Cellular Genetics of Immune Responses G. J. V. Nossal

Antibody Production by Transferred Cells
CHARLES G. COCHRANE AND FRANK J. DIXON

Phagocytosis
DERRICK ROWLEY

Antigen-Antibody Reactions in Helminth Infections E. J. L. Soulsby

Embryological Development of Antigens
REED A. FLICKINGER

AUTHOR INDEX-SUBJECT INDEX

Valume 3

In Vitro Studies of the Mechanism of Anaphylaxis
K. Frank Austen and John H. Humphrey

The Role of Humoral Antibody in the Homograft Reaction CHANDLER A. STETSON

Immune Adherence

D. S. Nelson

Reaginic Antibodies

D. R. STANWORTH

Nature of Retained Antigen and Its Role in Immune Mechanisms
Dan H. Campbell and Justine S. Garvey

Blood Groups in Animals Other Than Man W. H. STONE AND M. R. IRWIN

Heterophile Antigens and Their Significance in the Host-Parasite Relationship

C. R. JENKIN

AUTHOR INDEX-SUBJECT INDEX

Volume 4

Ontogeny and Phylogeny of Adaptive Immunity ROBERT A. GOOD AND BEN W. PAPERMASTER

Cellular Reactions in Infection

EMANUEL SUTER AND HANSRUEDY RAMSEIER

Ultrastructure of Immunologic Processes
JOSEPH D. FELDMAN

Cell Wall Antigens of Gram-Positive Bacteria
MACLYN McCarty and Stephen I. Morse

Structure and Biological Activity of Immunoglobulins
SYDNEY COHEN AND RODNEY R. PORTER

Autoantibodies and Disease

H. G. KUNKEL AND E. M. TAN

Effect of Bacteria and Bacterial Products on Antibody Response

I. Munoz

AUTHOR INDEX-SUBJECT INDEX

Volume 5

Natural Antibodies and the Immune Response STEPHEN V. BOYDEN

Immunological Studies with Synthetic Polypeptides
MICHAEL SELA

Experimental Allergic Encephalomyelitis and Autoimmune Disease
PHILLIP Y. PATERSON

The Immunology of Insulin

C. G. POPE

Tissue-Specific Antigens

D. C. DUMONDE

AUTHOR INDEX-SUBJECT INDEX

Volume 6

Experimental Glomerulonephritis: Immunological Events and Pathogenetic Mechanisms

EMIL R. UNANUE AND FRANK J. DIXON

Chemical Suppression of Adaptive Immunity

ANN E. Gabrielson and Robert A. Good

Nucleic Acids as Antigens

Otto J. Plescia and Werner Braun

In Vitro Studies of Immunological Responses of Lymphoid Cells RICHARD W. DUTTON

Developmental Aspects of Immunity

JAROSLAV ŠTERZL AND ARTHUR M. SILVERSTEIN

Anti-antibodies

PHILIP G. H. GELL AND ANDREW S. KELUS

Conglutinin and Immunoconglutinins

P. J. LACHMANN

AUTHOR INDEX-SUBJECT INDEX

Volume 7

Structure and Biological Properties of Immunoglobulins
SYDNEY COHEN AND CESAR MILSTEIN

Genetics of Immunoglobulins in the Mouse
MICHAEL POTTER AND ROSE LIEBERMAN

Mimetic Relationships between Group A Streptococci and Mammalian Tissues

JOHN B. ZABRISKIE

Lymphocytes and Transplantation Immunity
DARCY B. WILSON AND R. E. BILLINGHAM

Human Tissue Transplantation JOHN P. MERRILL

AUTHOR INDEX-SUBJECT INDEX

Volume 8

Chemistry and Reaction Mechanisms of Complement HANS J. MÜLLER-EBERHARD

Regulatory Effect of Antibody on the Immune Response
JONATHAN W. UHR AND GÖRAN MÖLLER

The Mechanism of Immunological Paralysis
D. W. Dresser and N. A. MITCHISON

In Vitro Studies of Human Reaginic Allergy
ABRAHAM G. OSLER, LAWRENCE M. LICHTENSTEIN, AND DAVID A. LEVY

AUTHOR INDEX-SUBJECT INDEX

Volume 9

Secretory Immunoglobulins

THOMAS B. TOMASI, JR., AND JOHN BIENENSTOCK

Immunologic Tissue Injury Mediated by Neutrophilic Leukocytes
CHARLES G. COCHRANE

The Structure and Function of Monocytes and Macrophages

ZANVIL A. COHN

The Immunology and Pathology of NZB Mice
J. B. HOWIE AND B. J. HELYER

AUTHOR INDEX-SUBJECT INDEX

Volume 10

Cell Selection by Antigen in the Immune Response Gregory W. Siskind and Baruj Benacerraf

Phylogeny of Immunoglobulins Howard M. Grey

Slow Reacting Substance of Anaphylaxis
ROBERT P. ORANGE AND K. FRANK AUSTEN

Some Relationships among Hemostasis, Fibrinolytic Phenomena, Immunity, and the Inflammatory Response
OSCAR D. RATNOFF

Antigens of Virus-Induced Tumors
KARL HABEL

Genetic and Antigenetic Aspects of Human Histocompatibility Systems
D. Bernard Amos

AUTHOR INDEX-SUBJECT INDEX

Volume 11

Electron Microscopy of the Immunoglobulins
N. MICHAEL GREEN

Genetic Control of Specific Immune Responses
Hugh O. McDevitt and Baruj Benacerraf

The Lesions in Cell Membranes Caused by Complement JOHN H. HUMPHREY AND ROBERT R. DOURMASHKIN

Cytotoxic Effects of Lymphoid Cells In Vitro Peter Perlmann and Göran Holm

Transfer Factor

H. S. LAWRENCE

Immunological Aspects of Malaria Infection
Ivon N. Brown

AUTHOR INDEX-SUBJECT INDEX

Volume 12

The Search for Antibodies with Molecular Uniformity RICHARD M. KRAUSE

Structure and Function of γM Macroglobulins HENRY METZGER

Transplantation Antigens

R. A. REISFELD AND B. D. KAHAN

The Role of Bone Marrow in the Immune Response
Nabih I. Abdou and Maxwell Richter

Cell Interaction in Antibody Synthesis
D. W. TALMAGE, J. RADOVICH, AND H. HEMMINGSEN

The Role of Lysosomes in Immune Responses
GERALD WEISSMANN AND PETER DUKOR

Molecular Size and Conformation of Immunoglobulins KEITH J. DORRINGTON AND CHARLES TANFORD

AUTHOR INDEX-SUBJECT INDEX

Volume 13

Structure and Function of Human Immunoglobulin E
Hans Bennich and S. Gunnar O. Johansson

Individual Antigenic Specificity of Immunoglobulins
JOHN E. HOPPER AND ALFRED NISONOFF

In Vitro Approaches to the Mechanism of Cell-Mediated Immune Reactions $$\operatorname{Barry}\ R.\ \operatorname{Bloom}$

Immunological Phenomena in Leprosy and Related Diseases
J. L. Turk and A. D. M. Bryceson

Nature and Classification of Immediate-Type Allergic Reactions ELMER L. BECKER

AUTHOR INDEX-SUBJECT INDEX

Volume 14

Immunobiology of Mammalian Reproduction
ALAN E. BEER AND R. E. BILLINGHAM
Thyroid Antigens and Autoimmunity

Thyroid Antigens and Autoimmunity
SIDNEY SHULMAN

Immunological Aspects of Burkitt's Lymphoma George Klein

Genetic Aspects of the Complement System
CHESTER A. ALPER AND FRED S. ROSEN

The Immune System: A Model for Differentiation in Higher Organisms
L. HOOD AND J. PRAHL

AUTHOR INDEX—Subject Index

The Regulatory Influence of Activated T Cells on B Cell Responses to Antigen

DAVID H. KATZ AND BARUJ BENACERRAF

Department of Pathology, Harvard Medical School, Boston, Massachusetts

I.	Introduction
II.	Specific Cells of the Immune System
	Requirement of Two Distinct Lymphoid Cell Types in the Development
	of Humoral Immune Responses
	A. Response to Foreign Erythrocyte and Protein Antigens
	B. "Carrier Effect" and Cooperative Interactions Specific for Different
	Determinants on the Same Antigen
IV.	Nature of the Regulatory Influence of Activated T Cells on Antibody
	Responses by B Cells
	A. Stimulation of B Cells in the Absence of T-Cell Regulation 2
	B. Effect of T-Cell Activity on the Class of Immunoglobulin Synthesized 2
	C. Role of T-Cell Regulation in the Selective Pressure by Antigen on
	B Cells
V.	Immunological Specificity and Properties of T and B Cells Concerned
	with Cooperation Phenomena
	A. Immunological Specificity of T and B Cells
	B. Antigen Receptors on T and B Cells
	C. Recognition of Hapten and Carrier Determinants by T and B Cells . 3
	D. Sensitivity and Resistance of T and B Cell Function to X-Irradiation
	and Corticosteroids
VI.	Mechanism of Regulation of B Cell Function by T Cells
	A. Transfer of Genetic Information
	B. Antigen Presentation and Concentration
	C. Regulation of B Cell Function in Antibody Production by Mediators
	Produced and Secreted by T Cells
VII.	Suppressive Effects of T Cells on Antibody Synthesis
	A. Enhancement of Immune Responses by Depletion of T Cells
	B. Suppression of Antibody Responses by the Administration of More
	Than One Antigen (Antigenic Competition)
VIII.	Functions of T and B Lymphocytes in Various Immunological
	Phenomena
	A Immunological Toloranos
	B. Immunological Memory
	C Immunological Adianasta
	D. Coll Mediated Tourse
IX.	Biological and Pathophysiological Significance of the Regulatory In-
	fluence of T Cells on Antibody Production
	References
	1.02cremees

I. Introduction

The clonal selection theory of Burnet and his postulate that antigenreactive precursors of antibody-secreting cells bear antibody receptors of unique specificity (1-3) have been largely substantiated in the past decade (4-8). Another major advance in immunobiology has been the recognition of two pathways for the differentiation of antigen-reactive cells. It is generally accepted that a class of bone marrow lymphocytes migrates to the thymus where the cells develop the ability to respond to antigen. These thymus-derived lymphocytes, generally referred to as T cells, are responsible for the various phenomena of cell-mediated immunity: delayed sensitivity, homograft, and graft-versus-host reactions. The second lymphocyte cell type arises also in the bone marrow and settles ultimately in distinct anatomical sites in peripheral lymphoid tissues where these cells give rise to the precursors of antibody-secreting cells, B cells (9-11).

The most recent discoveries in immunobiology concern the realization that the differentiation of antigen-stimulated specific B cells into antibody-secreting cells depends, for most antigens, on the concomitant activity of specifically stimulated T cells. The original observations established the requirements of specifically activated T cells for the antibody response by B cells to antigen in vivo and in vitro in various systems and clarified the relationship between hapten determinants and carrier function originally introduced by Landsteiner (12). It was later recognized that the effect of stimulated T cells on the response of B cells to antigen is more complex and affects also (a) the switch from the production of IgM to IgG antibodies and (b) the rate of selection of specific cells by antigen in the immune response as reflected in the change in affinity of humoral antibody with time. It was further shown that the activity of histocompatibility-linked, specific, immune response (Ir) genes in T cells is essential for all these phenomena triggered by antigen. More recently, it is becoming apparent also that regulatory effects of activated T cells on antibody responses by B cells may be suppressive under certain conditions, whereas under other conditions, as stated above, they are stimulatory, which may explain the well-known phenomenon of antigenic competition. In fact, what appeared at first as an important and essential cooperation phenomenon between two specific cell types and antigen to trigger effective antibody responses is now more appropriately interpreted as the expression of a fundamental regulatory function of activated T cells on B cell responses.

The present review first describes the experimental data on which these statements are based and relates how insight into these fundamental and fascinating phenomena was achieved. The topics discussed also include intimate mechanisms of the regulation of antibody responses by T cells, the significance of these phenomena for the regulatory processes of the immune system, and their possible implication for the pathogenesis of various immunopathological states.

II. Specific Cells of the Immune System

The immunocompetent lymphocytes can be divided into two general types on the basis of functional differences: (1) T cells—small lymphocytes that have adapted to certain specific immune functions by virtue of some as yet undefined influence of the thymus (thymus-derived); and (2) B cells—small lymphocytes that have not been directly influenced by the thymus and which are the progenitors of mature antibody-producing plasma cells.

Experimental evidence weighs heavily in favor of the concept that unipotential cells which populate the various hematopoietic tissues of fully developed individuals are derived from common pluripotential stem cells (for review, see 9). Ontogenically, stem cells originate in the embryonic yolk sac and primitive blood islands, migrating later to hematopoietic colonies in fetal liver and bone marrow. Further migration occurs via the bloodstream to various tissues of the hematopoietic system where further differentiation occurs (13, 14). Differentiation to unipotential progenitor cells of either lymphoid or myeloid lines is signaled by inductive factors, presumably existing in the microenvironment of the different hematopoietic organs of the individual (15). We shall limit our considerations here to the lymphoid cell lines.

Stem cells differentiate into unipotential progenitor lymphoid cells under the microenvironmental influences of the primary lymphoid organs (14). Avian lymphoid systems have been shown to consist of two distinct primary lymphoid organs—the bursa of Fabricius and the thymus—the influence of which on the differentiation of the stem cells that have migrated to them is clearly distinguishable on the basis of the functional differences of such cells in the immune system (16-20). Surgical extirpation of the bursa from a newly hatched chick results in depression of serum immunoglobulin levels and marked diminution in the capacity to develop humoral antibody responses to antigen stimulation, but has little effect on the ability to reject tissue allografts (20-22); in contrast, early removal of the thymus diminishes the capacity to develop delayed hypersensitivity and impairs allograft rejection (20-25). In mammals, it is now also clearly established that there exists two distinct lymphoid systems responsible for differentiation of immunocompetent cells. One is clearly thymus-influenced, but the other is not. Hence, neonatal thymec-