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I. Introduction

The electric dipole polarizability of an atom or molecule describes the
response in lowest order of the field strength of the electron cloud to an

external

electric field. This property plays an important role in those collision

processes where the relevant electric field is that produced between collision
partners, one or both of which is a neutral atom or molecule. Indeed, some

1



2 T. M. Miller and B. Béderson

TABLE I

MANIFESTATIONS OF THE ELECTRIC DIPOLE POLARIZABILITY a°

Long-range electron- or ion-atom V= —ea/2r*
interaction energy
Ton mobility in a gas® K = 13.876/(au)*"* cm?/volt sec
Relation between afvV' X(v) = 3 ( n(v)? — 1)
and oscillator strengths® arn \n(v)? + 2
van der Waals constant between systems a, b C. = 3 ( %% )
{Slater-Kirkwood approximation ) 8 T 2\ (/)M ¥ (ay/my)"2
-1
_ " Dipdle-quadrupole " constant Cg* Cyg= 125 ada‘; Gl)d + a‘i }
. o F n{v)? -
Clausius-Mosotti relation a(v) = A (n(v)2 N 2)
Dielectric constant? K(v) =1 + 4ana(v)
Index of refraction” ‘ n(v) = 1 + 2zna(v)
Diamagnetic susceptibility’ 1™ =~ e*[aon, o] /4mc?
) vh dx(v)
Verdet constant/ - V(v) = ame? dv .
Rayleigh scattering cross-section* o(v) = (8r/9¢*)2nv ) [3a(v): + %y(v?)]
Sk e . o 8n2u
Modified effective range cross-section’ / olk) = 4nA® + 12 Z2e*adk + -
» 27 el V2
- Langevin capture cross-section™ a(ve) = ”Eo (—“)
- : 3o’E,
Casimir-Polder effect” Viry = —g( ’;{,’,6"‘)

“a is the static polarizability; frequency-dependent polarizabilities are indicated by x(v),
which reduce to z for v = 0. Anisotropic effects are not included, except where specifically
noted; cgs units are used except where noted.

b & in units of A3, 4 is the ion-atom reduced mass in units of the proton mass. Assumes pure
polarization interaction — e2o/2r%; classical limit.

“ for is the average oscillator strength over magnetic substates, and refers to a transition

between the state whose polarizability is a(v,) and all other states connected to this state by
dipole matrix elements.

4 n, , are number of electrons in outer shells of a, b.

“ a4, o, are the dipole and quadrupole polarizabilities; @,, @, are, the average transition
frequencncs for dipole and quadrupole transitions (see Stwalley, 1970 Kramer and Herschbach,
1970). .

/ For a gas of atoms or of molecules that do not possess permanent electric dipole moments.
n(v) is the frequency-dependent index of refraction. n is number density.
¢ Obtamcd from Clausxus—Mosom relation, assuming K =~ 1.
"n*(v) = K(v).

“In the approximation that the static polanzablhty is given by the varxatlonal formula

Z (n,r)?



ATOMIC AND MOLECULAR POLARIZABILITIES 3

low-energy scattering process can be specified accurately by an expression
that involves only one parameter—the polarizability.

In some circumstances a part of the atom can also be assigned a well-
defined polarizability. Thus, the “core polarizability” refers to the polariz-
ability of the inner shells and is an important parameter in determining
quantum defects, nuclear shielding, and polarizabilities of ionized atoms.

Clearly, the polarizability is particularly important in interactions where
there is little interpenetration of the wavefunctions of the collision partners.
“The most loosely bound electrons play the largest role in the redistribution
of the electron charge in an electric field; the valence electrons generally
account for at least 90% of the polarizability of an atom or molecule.

The manifestations of the atomic polarizability in collision phenomena
are manifold. A testimony to its importance is the frequency with which one
encounters an expression involving the polarizability. We have gathered a
representative collection and give them in Table 1, which also includes some
references to frequency-dependent polarizabilities. Some of these expres-
sions have been used as a basis for measuring the polarizability, for example,
using dielectric constants or ion mobilities. It is sometimes difficult to track
down published polarizability calculatians for specific atoms and molecules,
since these often appear as intermediate steps in other calculations. One of
the best calculations of the polarizability of cesium is that of Norcross
(1973), in a paper entitled “ Photoabsorption by Cesium.” Other examples
are the papers of Ice and Olson (1975) entitled “ Low-Enetgy Ar*, Kr*,
Xe* + K, Rb, Cs Charge Transfer Total Cross Sections,” and of Garrett
(1965), “Polarization and Exchange Effects in Slow-Electron Scattering
from Lithium and Sodium,” in which atomic polarizabilities were calculated. -

(Table footnotes continued)

(see Hirschfelder ef al., 1954, p. 942 ff.). The correct definition of magnetic susceptibility per
atom is ;

eZ

™= 6me’ Z': nirt

In the very crude approximation that all the energy denominators in the oscillator strength
summation for « are equal to the ionization energy, x™ = (E/4mc?)a. :
/ Defined from 6 = V(v)B, where 0 is the angle of rotation of linearly polarized light through

a medium of density n, per unit length. for a longitudinal thagnetic field strength B (Faraday
effect).

“alv) =23, +dx i(v)=a, -, . :

' 4 is the scattering length, u the reduced mass, k the wavenumber of the scattered particle,
uo/h (see O'Malley et al., 1962).

™ vo is the relative velocity of approach for an ion-neutral pair.

" V(r) is interaction energy for two nonpolar molecules. at very large distances [r » cE, /h]. g

is a numerical factor, and E, equals an average over the excitation energies (Casimir and Polder.
1938). ’ ’

55054 9%



4 T. M. Miller and B. Bederson °

This article will review recent advances in the experimental and theoreti-
cal determination of the polarizabilities of simple atoms and molecuies. We
will concentrate primarily on static (as opposed to frequency-dependent)
polarizabilities, although some discussion of the latter will be presented.
Higher-order polarizabilities, which are becoming increasingly accessible to
observation because of the availability of high-intensity lasers, will also be
briefiy discussed.

The perturbation of atomic levels by electric fields was first reported by
Stark (1913) and independently by LoSurdo (1913). The “Stark effect” was
treated ‘theoretically by Epstein (1916), who was later to apply the new
quantum theory to the same problem (Epstein, 1926). Polarizability values
(related to the “ quadratic Stark effect ) are accurately known for the noble
gas atoms and for hydrogen, in theory, but the remainder of the periodic
table has proven much more difficult to deal with, both theoretically and
experimentally. The static electric dipole polarizability of the ground-state
hydrogen atom is almost exactly 4.5a , where a, is the Bohr radius. Across
rows of thg periodic taMe, polarizabilities range from hundreds (of a3 units)
for the alkali metal atoms generally monotonically down to a few for noble
gas atoms. Excited atoms have much larger polarizabilities; recent polariz-
ability measurements for atoms in Rydberg orbits have yielded values on
the order of 10'%y. In Fig. | we have plotted the polarizabilities of the ?
atoms in the first row of the periodic table. On the same graph we show the
polarizability anisotropy, which indicates the importance of the orientation

=]
1

POLARIZABILITY (a,3)
N
o
i

-
[=]
1

-10. L I I | | I
Li Be B  C N O F Ne

FiG::4. Atomic polarizablities and polarizability anisotropies across the first row of the
periodic table. (Results of Werner and Meyer, 1976.)
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of the atom in an external electric field. The anisotropy is largest when
the first p electron is added (boron) and becomes smaller for successive P
states as the valence shell fills. - "

A. MoOMENTS

An atom or molecule in a uniform electric field E has an electric dipole
morhent

p=po+aE+IBE: + 3y} - (1

We will deal with cases where there is no permanent dipole moment p,, , only
induced moments. Thus this discussion is restricted to the class of all atoms, '
and homonuclear molecules. For sphérically symmetric states f is zero. One
is generally concerned only with the polarizability o, a sécond-rank tensor;
however, the hyperpolarizability y (a fourth-rank tensor)is of current interest
in relation to laser studies of nonlinear effects in atoms. Higher-order hyper-
polarizabilities are not significant in present-day experiments. Practically
speaking, for static laboratory fields the induced electric dipole moment is
adequately described by the polarizability . If intense laser radiation fields
are also present, then both the polarizability & and the hyperpolarizability y
are needed to determine the induced electric dipole moment, although of
course for this situation- one is referring to a(v), y(v), where v is the frequency
of the laser field. For the ground state of the hydrogen atom, the polarizabil-
ity o, as already mentioned, is 4.543, while the hyperpolarizability 7y .is
exactly 1333.12548 /Hartree. S :

The hyperpolarizability should not be confused with higher-order multi-
. poles of the atomic charge distribution. The full quadrupole moment also
" contains induced terms, which depend on the electric field strength and on
the field gradient. A complete treatment of the dipole and quadrupole ex-
pansions and the symmetry properties of the coefficients has been given by
Buckingham (1967). All coefficients in these expansions depend upon the
frequency of the applied external electric field. We are interested primarily in
dc fields and most of our discussion will be for static polarizabilities. The
polarizability is not significantly different from its static value for frequéncies
of the external electric field much less than the frequency corresponding to
the lowest excitation energy of the atom. For resonant frequencies or very
large frequencies the atom may absorb energy from the external field va
excitation or ionization of the atom, and loss of flux to these channels will
affect the polarizability. Calculation of the polarizability for complex
frequencies yields the total photoionization cross section, proportional to
-a(iw), where i denotes the imaginary part of the angular frequency w.

We have not mentioned dipole and quadrupole shielding factors that
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involve different matrix elements than will be emphasized below, but the
calculational methods are the same. The dipole shielding factor is the ratio
of the change in the electric field at the nucleus due to the redistribution of
the atomic charge, to the strength of the external electric field at the nucleus.

~ Thedipole shielding factor is determined by the operator YN, Py(cos 0,)/rZ
where the sum is over the N electrons of the atom, r; and 6, are radial and
angular coordinates for the ith electron, and P(cos ;) is a Legendre poly-
nomial of order K. The quadrupole shielding factor depends on the operator
Y.< 1 P;(cos 0,)/r}. Dipole and quadrupole shielding factors are required for
the determination of nuclear moments from measurements of atomic
hyperfine structure. They correct for the distortion by core electrons of the
effect of nuclear moments on the energy of the valence electrons. According
to the Hellmann-Feynman theorem (Chang et al., 1968), the dipole shielding
factor is unity for a neutral atom and N/Z in general. Application of various
theoretical techniques to its calculation provides grounds for comparisons
between these techniques.

B. MATRIX ELEMENTS

It is customary to treat the external electric field as a perturbation. The
perturbation hamiltonian is —p - E, where p is the dipole operator
—e Y X, r,. The summation is of the position coordinates r; of the N elec-
trons in the.atom. The electronic charge is e. The first-order energy correc-
tion (Yo |p - E|y,) is zero if the unperturbed state |y, > has definite parity.
This is to say that there is no permanent dipole moment. The second-order
energy correction W, is quadratic in E,

W, = —FE2 [dolp - d]y >
o k_;o gk—go

(2)

where i is a unit vector defined by E = Ef, k denotes a state of the atom of
energy &, and the sum is over all states of the atom except for k = 0.
We can compare this energy correction to the negative integral of Eq. (1),

W= —ja:E? - 3)
in which we have taken p, = p = 0 and have ignored higher-order dipole

polarizabilities. We see that the second-order energy correction in perturba-

tion theory may be identified with the polarizability & The fourth-order
energy correction gives 7.

If we consider a cartesian coordinate system (x, y, z), the components of
the polarizability tensor are '

ay =2y SOIPdk<k[p, |0

Lj=xy,z 4
k#*0 gk—'go ~y ()
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The components of the hyperpolarizability tensor are (Buckingham, 1967)
Vijmn = S(i, j, m, n) Z

kF0
[ 0| pilk><k| ;| 1D<I | Pm| @< | | 0D
50 laFo (B = ENE — &) &y — &)

<0|P.Ik><k|P,|0><0Ipmll><llp,.|0>
(€ — &0 (&1 — &)

<01p.|0><0|pj|k><kIp...|1><llp..I0>}
(&, —80)%(&,

<0|P;|0><0|P,|0><0IP... k><klp..|0>= 5)
(6 — &0)°

where i, j, m, n = x, y, z, and S(i, j, m, n)is a symmetrizing operator implying
a summation over all the 24 permutations of i, j, m, n in the expressxon
following S(i, j, m, n).

We have already indicated that odd-order energy corrections for spher-
ically symmetric atoms are zero. There are also simplifications in the aand y
tensors for isotropic systems. The a and y tensors themselves must be isotro-
pic; the only second-order isotropic tensors are scalar multiples of the unit
tensor J;;; therefore,

X

ijs
% =ady; (6)

where a is a scalar and fully represents the polarizability for S-state atoms.
Fourth-order isotropic tensors have nonzero components only when i, j, m,

and n occur in pairs. The most general isotropic fourth-order tensor can be
written

Viimn = A0:;Omn + U(OimOjn + 0:y0 i) + V(OimOjn — OinOjom) (7)
The fourth-order energy correction is
| Wo=—fyE* ®)
which is
—%2XY D 2 VimmEE;EnE, ©)

i j m n

where i, j, m, n = X, y, z. Substituting for y;,,,, the general isotropic form given
in Eq. (7), we find

W, = —25(4 + 2p)E* (10)

where E* = EZ + E} + EZ. In Eq. (9) we note that y,,,, = ,,,, = y,.., =
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A+ 2y, so that if we define a scalar y = v, ., = y,,,, = 7.... We can write a
purely scalar equation,

W, = —3yE* (11)
- For spherically symmetric atoms then, we have the energy given to fourth
order by o
"W =W, —$aE* — AE* (12)

The geometric arguments above were given by Grasso et al. (1968).

In general, the calculation of atomic polarizabilities will involve nonspher- _
ical wavefunctions and the polarizability will depend on the orientations of
the atom in the electric field. However, the polarizability tensor components
are not necessarily independent. If the electric field direction is chosen to be

along the axis of symmetry of the atom, the off-diagonal components vanish,
and o, = a,,. The dipole operator p is a so-called T operator (Condon and
Shortley, 1951) whose components satisfy the same commutation rules with
the components J,, J,, and J, of the total angular momentum J as do J,,

Jy, and J, themselves. The tensor components a,,(m,) and a,,(m,) are then
(Bederson and Robinson, 1966) .

e (my) = AJZ + m3 — J)+ BJ? + J — m?) A
C+ CU* 43T +2+m) (13a)
. (m;) =2A4(J* — mj) + 2Bm3 + 2C(J2 +2J + 1 —m2)  (13b)

4=7 VI_(‘/’ol'PWOI_)éJ_L,

k#0 ‘gk - (5”0

where

B = Z 1<w0|p||/’ﬁ|j)5"‘]’

X#0 &y — &,

_ |<¢0|P|¢k2|i
&\ as P

and p = |p|, and J, J’ are the total angular momenta for the Y, and ¥,
states, respectively. : N

It can be shown that of the 2(2J + 1) equations represented by Eq. (13),
only two are independent. The difference between any two tensor compon-
ents is a multiple of A — B + C:

ta(m)) = almy) = 2w —miMA - B+C)  (l4a)
aelm,) — o, (m,) = (m2 —m3)(4 — B + C) ~ (14b)
azz(mJ) - axx(m.l’) = (J2 +J - 2m3 - mi’)(A —B+ C) (14C)
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Therefore, once two independent components are determined, the full polar-
izability tensor for any m; can be obtained from Eq. (14). We note from
Eq. (13) that the tensor components are independent of the sign of m,, and
that if J = § the polarizability is a scalar.

The two independent _f)olarizability quantities are frequently expressed in -
terms of an isotropic part (the average polarizability) and a nonisotropic
part (the anisotropy or the “tensor” polarizability). The average polarizabil-
ity & is defined as the average of either «,, or «,, over m ;. Equivalently, & is
the average of «,,, a,,, and a,, for a given m:

a =320, + o) (15)

and & is the sarhe for all m, . The polarizability anisotropy [generally denoted
by y(m,), not to be confused with the hyperpolarizability ;] is defined as
a,,(m;) — a..(m,), a quantity that depends on m,. The “tensor™ polarizabil-
ity o, is similar to the anisotropy except that the m, dependence is removed:

tealm,) = &+ o(3m3 — J2 = YT — 1) (16)
From Egs. (13) and (15) it follows that v
@, = —2J(2J — 14 — B + C) (17)

When the symmetry axis of the atom is exactly parallel to the external
electric field, the polarizability is denoted by a; in the perpendicular case it
is o, . In the laboratory the symmetry axis of the atom cannot be oriented
exactly along the field direction and instead of « | the projection of o along
the field direction is measured,-namely, a,, (m, = J).

The matrix elements for the polarizability are similar to those for the
dimensionless oscillator strengths f;, except for the energy factor, where

2m &, — &, :
=30 L s P, ) (18

‘

Jox

and
nJ,J+1)=(J + 1)(2J '+ '3),
nJ,J)=J({J + l), e q(J, J-1)=J(2J -1)

and m, and e are the electronic rﬁa:s'é‘jveilnd charge. Comparing Egs. (13) and
(18), the average polarizability may be written

&___?th Jok
m. y¥o ("@k - 0@0)2

(19)
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This equation is useful because frequently values of fo, are available from
experimental or theoretical work on atomic transitions, and an estimate of
the average polarizability may be calculated from knowledge of these..

II. The Calculation of Polarizabilities

Theoretical calculations of polarizabilities have been made by a variety of
techniques—semiempirical, perturbation, variational, and statistical—with
some intermixing of these concepts. Some calculations are attempts to
obtain “exact” results (or rigorous bounds) to an arbitrary degree of accu-
racy for specific atoms, while others are aimed at finding a rapid technique
that can be more easily applied to any atom, sacrificing accuracy. For-
tunately, a number of theorists have mvestlgated the relationship between
different methods.

A. SUMMATION OF OSCILLATOR STRENGTHS

Thesimplest theoretical technique for the calculation of dipole polarizabil-
ities involves the summation of oscillator strengths, using Eq. (19). The
oscillator strengths satisfy a sum rule

ZfOk =N (20)

where the summation includes oscillator strengths for all possible electronic
transitions including ionization. It would not be feasible actually to obtain
all fo, , but Egs. (19) and (20) allow one to place bounds on the polarizabil-
ity. If f, is taken to represent known oscillator strengths (whether exper-
imental or theoretical), and F, are the remaining unknown oscillator
strengths, then Eq. (20) becomes ;

ka + Z Fy =
and the contribution of the wnknown osclllator strengths F, to the polariz-
ablhty is '
. As = 2H? . Fk»” | .
me Fo (6x — &o)
An upper bound to the unknown contribution Ag is given by taking the
smallest possible energy difference &2, :

min *

ezh2

AT < F 21
m (tpmm kgo * ( )
e2h? 1

M, (” - ) @)
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Then, we cart place bounds on &:

e’h? fi e’n? I 1 ( )]
£ < e i N —
m, ;o (épk - éﬁo)-z m, k;O (ék - éﬁo)z‘ éﬁrl:lin ' kgoﬁ‘

(23)

Dalgarno and Kingston (1959) used the oscillator strength sum rule for the
alkali metal atoms. Except for lithium, almost all of the contribution to the
sum comes from the resonance transition n, S-n, P, where n,, is the principal
quantum number of the ground state. Since only the valence electron is
important, N '~ 1. Dalgarno and Kingston used experimental and theoreti-
cal estimates of oscillator strengths and estimated the accuracy of the results
to be within about 5%, except for cesium (10%;). Their results are in accord
with the latest experimental measurements of the alkali polarizabilities.

Altick (1964) used experimental oscillator strengths to place bounds on
the polarizabilities of the alkaline earth atoms, for which there were no other
data at the time. Cohen (1967) determined bounds on the polarizabilities of
a number of neutral atoms and ions using experimental and theoretical
oscillator strengths. Included were the alkali metal atoms, the alkaline earth
atoms, and metastable helium states. [Unfortunately, the experimental res-
onance oscillator strengths used by Altick and Cohen for the alkaline earth
atoms were low (Stwalley, 1971).] The alkali atom calculations tend to com-
pare well to experiment, whil¢ the alkaline earth results are somewhat low.
Hyman (1974) has calculated the polarizabilities of the alkaline earth atoms
from experimental oscillator strengths.

B. EFFECTIVE QUANTUM NUMBERS

A semiempirical perturbation method has been developed by Adelman
and Szabo (1973), which is an improvement over the coulomb approxima-
tion of Dalgarno and Pengelly (1966). They utilize an effective (nonintegral)
principal quantum number obtained from the ionization potential, and an
effective angular momentum quantum number related to the ionization
potential of the closest electric-dipole-allowed state to the state under
consideration. Explicit core effects are neglected by Adelman and Szabo, but
the use of effective quantum numbers compensates for this neglect to some
degree. An analytic expression is given for the 2'-pole static electric polariz-
ability for atoms. The expression is evaluated for the dipole and quadrupole
polarizabilities of many neutral atoms and ions. The results for S-state mon-
ovalent atoms seem remarkably good. The results for divalent atoms and
P-state atoms are somewhat less reliable.



