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.Foreword

" Research in theoretical computer science has experienced tremendous growth both in
the depth to which older theories have been pursued and also in the number of new
. problem areas that have arisen. While theoretical computer science is mathematical
‘in nature, its goals include the development of an undelstandmg of the nawre of
computation as well as the solution of specific problems that arise iz the practice of
computing.

The purpose of tlus series of monographs is to make avallable to the professional
commumty expositions of topics that play an important role in theoretical computer
science or that provide bridges with other aspects of computer science and with aspects
of mathematics. The scope of the series may be considered to be that represented by the
leading journals in the field. The editors intend that the scope will expand as the field

Brows and welcome submissions from all of those interested in theoretical computer
- science.

Ronald V. Book
Main Editor



Preface

Computational complexity" theory has been at the leading edge of
research in theoretical computer science for the past twenty.
years. Since Stephenm Cook's discovery of NP-complete problems
in 1971 and Richard Karp's application of this notion to
combinatorial problems in 1972, there has been a continuing
sﬁrge of activity in this area. It is quite clear that
complexity theory will play an-important role in theoretical
computer science in the future. o

Beyond the design and analysis of algorithms for specific
combinatorial problems, the primary goal of researchers in this
field is to develop a quantitative theory of complexity. Such a-
theory must provide general results on different measures of
computational difficulty (say, time and space), different mddels
of computation (say, sequential and parallel), and different o
notions of mode of computation (say, the deterministic, non-" '
deterministic, alternating, and probabilistic modes).

It is clear that the P =? NP problem and the open problems
that are related to it are fundamentally important in the
development of any such quantitative theory of computational’
complexity. Furthermore, these problems play an important }ole
in considering appllcatloﬁs of complexity theory to other areas
of mathematics and computer science.

Three aspects of computational complexity theory are
described in this volume. The first paper, by Ker-I Ko,
describes how the techniques of discrete complexity theory can
be used in the study of numerical computation. Professor Ko
shows how concepts developed in the study of the P =? NP and
related problems can be used as a basis for developing a
‘complexity theory for numerical computation. The second, by
Stephen Mahaney, surveys some recent results in the development
of a structuré theory for complexity classes., In particular,



Dr. Mahaney examines the possibility of sparse sets being
complete sets and considers the consequences for the P =? NP
"and related problems. The third, by Kenneth McAloon,. sketches
relationships between problems in logic--more specifically, the
study of models of arithmetic--and problems in complexity <

AN

theory. Professor McAloon describes recent research on initial

segments of models of arithmetic and shows how certain "bridging
theorems" can be used to relate this work to problems related to
the P =? NP problenm.

These three papers provide insight into aspects of
computational complexity theory. It is expected that they can
be read as part of advanced lecture courses and seminars as well
as by individual researchers.

These papers. are based on talks given by the authors at a
conference on computational complexity theory held at the
University of California at Santa Barbara in March 1983. The
conference was supported by the College of Letters and Science
at U,C.S.B. and by the National Science Foundation under Grant
MCS82-15544. »

-The preparation of this volume was supported in part by the
National Science Foundation under Grént DCR83-12472.

The Editor gratefully acknowledges the efforts of Ms. Leslie
Wilson in preparing the entire manuscript for publication.
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KER-I KO

Applying techmques of discrete complexity
theory to numerical computation

1. INTRODUCTION

The study of formal computational theories of real analysis can
be traced back to Turing's pioneering work [91], in which he
gave, based on the Turing machine (TM) model, a simple defin-
ition of computable real numbers. More studies on the defin-
ition of computable real numbers have been done by [85,64,73,
72]. In the 1950's a formal therry of computational analysis,
called recursive analysis, was developed in the setting of
recursive function theory. In this theory, a computable real
function is defined as a recursive functional operating on the
Cauchy sequence representations of real numbers [22,23].l Many
interesting results about the constructive versions of theorems
.in classical real analysis have been obtained (see [69,70] for
a summary).

While recursive analysis is useful in studying the comput-
.ability problems in the theory of real analysis, it has not
been applied to the study of computational complexity of
numerical algorithms. Instead, the floating-point model of
teal computation is often used in the analysis of numerical
algorithms, mainly because it behaves closer to the computation
in actual digital computefs. However, as it is well known (see,
for example, [34]), this simplistic model of real computation

does not reflect correctly the structure of real computation,



and thus cannot be used as a model for a general, mathematical
complexity theory. ‘FOr;examﬁle, it is difficult to prove, in
this‘model, negative results about the complexity of a
numerical problem; In other wofds) there is a big gap between
the theory of recﬁrsive analysis and the theory of numericél
analysis, »

On the other hand, in the discrete theory of computation,
sﬁchia gap does not exist:becaﬁse_of-th; successful development
of an interesting polynomial complexity theory [13,15,31,27,18].

This polynomial complexity théory, especially the NP theory,
l_néﬁ‘dnly provides powerfulitools for clagsifying the inherent
.compléexity ‘'of natural problems, but also reveals interesting
mathematical strﬁctures of polynomial computation., In addition,
this theory has éiso been widely applied to many subareas of
mathematics and computer science [18]. Thus, it is natural to
try to extend the ﬁolynomial complexity theory to real computa-
tion to complement the theories of recursive analysis and
numerical analysis.: .Indeed, such attempts have been made even
before the NP theory.exists [56,57].

In this paper, we give an overview of a polynomial complex-
ity theory of numerical computation, which was developed in the
past five years. Although, the computational model and the
general setting in this>theory follow those of recursive
analysis, we use extensively'the concepts and techniques of
discrete polynomial complexity theory. The main issues to be
discussed include the classification of the complexity of basic,

numerical operations, the relationship among analytical



properties, structural properties and compléxity proferties of
real functions, and the relationship between thc structures of
continuous and discrete objects. ,
In Section 2, we discuss how to design a gengral computa-
tional model for numerical problems and how to apﬁly'the
concepts of discrete complexity theory to this model to define
computational complexity of real functions. In Section 3, the
computational complexity of numerical operations such as roots,
integrals and derivétives is discussed. We apply the concepts
of the NP theoéy to these problems and derive lower bounds
for these operations which are otherwise difficult to prove in
classical numerical analysis. In Section 4, the structure of
‘real numbers and real functions is examined in thé context of
discrete complexity theory. It is shown that the Dedekind cut
representations of real numbers and sparse sets .have similar
structural properties. From these structural properties, a |
partial ctlassification of the complexity of NP 1left cuts ;n
the low hierarchy in NP 1is given. 1In Section 4.3 we discﬁss
the relative complexity of real numbers and compare the struc-
tures of recursive real functions with vérious reducibilities
on real numbers. Open questions and future research directiomns

are discussed in the final section.

2. MACHINE MODELS AND COMPLEXITY OF REAL FUNCTIONS

In this section we describe our computational model for numer-
ical problems and give the definition of computational com-
plexity of real functions in this model. Our model 4s an

infinite-precision discrete model., It is different from the



infinite-precision continﬁous model, such as the one used by
Borodin and Munro [10] in the analysis of complexity of
algebraic computation, in which the cost of an arithmetic
operation is only one unit. -We accept the limit of discrete
processing in .actual digital computers and will use bit-
operation measure of complexity. Our model is also different
from the finite-precision discrete model such as the floating-
point model because we require a good algorithm to be able to
produce outputs with arbitrarily small, a priori bounds. A
numerical algorithm in our model works as follows. It accepts,
as the first input, a user-specified output precision and, as
the second input, an approximate value to a real-valﬁed problem
instance with high precision, and it outputs an approximate
value to the real-valued solution with the predéfined precision.
The complexity of such an algorithm is measured as a function
of both the size of the problem instance and the output

precision.

2.1 Computational Complexity of Real Numbers

In order to discuss computational complexity of real numbers,
it is necessary to consider first the represehtations of real
numbers. The most general representations of real numbers
include the Cauchy sequence representation, the Dedekind cut
representation and the binary (or, decimal) expansion repre-
sentation. The three repreéentations thus provide three
natural definitions of computable real numbers. Let N be the
set of all non-negative integers, Z the set of all integers,

Q the set of all rationals and R the set of all reals.

4



Definition 2.1(a). A real number Xx is eomgutable if there is

a recursive function ¢ : N — Q, . and a recursive function
$ : N — N, such that for all m, n € N, |¢(m) - x| < 2R

whenever m > y(n).

Definition 2.1(b). A real number x is computable if the set

{r €Q:r <x} is a recursive set of rationals,

Definition 2.1(c). A real number x is computable if there

exists a recursive function ¢ : N — N such that (i) ¢(n) €

{0,1}" for all n > 1 and (ii) x = ¢(0) + I _; o(n)-2"",

Robinson [73] was the first to point out that the abofe
tﬁree definitions are equivalent. On the other hand, Specker
[85], Péter [64] and Mostowski'[él] noticed that the sub-
recursive classes of real numbers defined by the three repre-
sentations are in general not equivalent, and the Cauchy
sequence representation appears to be the‘moet comprehensive
one, In the following we give more precise defjinitions of
these subrecursive classes of real numbers and discuss their
relations. A

First, we need some notation. Let D be the set of dyadic
rational numbers, i.e.,‘the set of a}l rational nembers which
have finite binary representations. In other words, D =
(m/2™ : m€ Z, n € N}. For each n € N, Dn is the set of
all dyadic rational numbers with < n bits in the fraction
parts of their binary representations; i.e., Dn = {m/2n
m € Z}. Dyadic rationals will be represented by finite binary

strings (with a decimal point). Let S = (+|-) (0|1)*,(0[1)*.



We may defiﬁéfa»mggpiﬁg At S — D by

, e . o n . m .
1(2d ... dido.es w..oe ) = 2] Y d.e2b s § e e27)
i ‘ 170071 _. =0 i =1 J

Note that each dyad1c ratlonal d in D has infinitely many
string representatlons, each . w1th a dlfferent length, Thus,
it appears more conven1en;«tg<u$évthe sprlng;representations

of d diféctly in'the‘follow{ﬁg-discussion.- That is, we will
write s €8 to denote both the str1ng s and the dyadic'
rational number- 1.(s). For any str1ng sve S, wé write
Zth(s)v to denote the length of '5.

‘Thé set D of dyadlc ratlonals 1s a dense subset of R
with finite representat1ons; Tﬂus, it can replace the set Q
of rationals and'be used as A,basié 6f a new;notation system,
We/fofmulate the féllowing1Peﬁresehtétions of real nuﬁbefs

using this notation system.

(a) Cauchy sequence representation. A function ¢ : N —'S

is said to binary convéggg to.é realﬁﬁumber x 1if for each
n €N, ‘@(n) € D and [¢(n) - x} i 2;n. ‘Then, for each reel
number X there are infinitely many functions binary converg-
ing to x. . We let CS(x) bé'the=set,of all these functions

and, for each set C of real numbers, CS(C) = le€C‘CS(x).

(a') Set representation of Cauchy sequences. Sometimes it is

convenient to have a set representation instead of a sequence

or a function representation of a real number. Ve use the



"projection" of the representation (a). For each ¢ € CS(R),
we define L¢ = {s €S :s < ¢(n), where n is the length of
the fraction part of s}. We call L a (general) left cut of

¢

x if ¢ € CS(x), and write LC(x) to denote the set {L¢

¢ € CS(x)} and LC(C) to denote {L¢ : ¢ € CS(C)} for any

set C of real numbers.

(b) Standard left cut representation. We define Lx =

{s €S8 :5s <x}. Let ¢(n) be the string of the”integral part
of x  plus the decimal point plus the first n bits of the
fraction part of the binary expansion of 4x, Then ¢ € CS(x)
and 'L¢-= L. That is, Ly is a special left cut representa-
tion in LC(x). The main difference between the standard left
cut L, and an arbitrary left cut' L¢ of x 1is that ;Lx
satisfies a pleasant property that for any string s and. t

in S ifv 1(s) ="1(t) then s € Lx <==> t € Lx, but this
property does not necessarily hold for arbitrary L

0 € LC(x). .
For example, let x = 1/3 = +.010101 ... . The function ¢
defined by ¢(2n) = +.01 ... 01 (n 01's) and ¢(2n+1) =

+.01 ... 011 (n O0l's and ohe 1) 1is in CS(x) and hence

L¢ € LC(x). We note that +.011 = ¢(3) €L

o but A+.9110 ¢ L¢

because +,0110 > +,0101 = ¢(4).

-

(c) Binary expansion representation. Define Bx ={n :n>20,
th
n

the bit of the fraction part of the binary éxpansion of

x is 1}.. Then x =1 2°™,  where I, is the

| x * zneBx
integral part of x,



Now we may define various subrecursive classes of real

"numbers based on these representations. 'For_example, {x € R

fhere is a recursive function -¢ € CS(x)}' is exactly the class

of eemputable real numbers defined By Definition 2.1(a); and is :
equal to {x € R : Lx is recursive} and {x € R : Bx is
recursive;. However, for primitive recursive real numbers,
these definitions are no longer equivalent. That is,' {x € R : Q
L, 15 primitive recurs1ve} = {x € R : B, is primiti?e

recur51ve} # {x € R : there is a primitive recursive ¢ € CS(x)}

[85,39]. In fact, this nonequivalence of the three definitions

is a geneial phenomenehein other similarly be;ined complexity

classes of realvnuﬁbers, For example, {x € R : Ly is

pol&nomial»time computable} = {x € R : B, is‘polyﬁomial-time

computable} # {x € R ::thege is-a $ € CS(x) which is

polynomial-time ébmputabie}' where inputs to ¢ and B care

writtgn in unafy notatieﬁ”T39]. It is generally accepted that,

-

among the three, the Cauchy sequence  vepresentation is the most

general one ([23,61,39]; also see the remark following Defin-

jtion 2.5, and [94]).
In the following we will define the computatlonal complexity
of real numbers using only the Cauchy sequence representation.

We use the time and space complexity of Turing machines [25,26]

; to define the time and space complexity of real numbers.

7

JDefihitien 2.2 [39] Let T : N— N be an integer function.

We say that the time (space) complex1ty of a feal number x is

v

bounded by» T if there is a Turing machine 'M such that the
function ¢ computed by M (i.e., ¢(n) = the output of M

8



on n) binary converges to x, and M halts on input n in

< T(n) moves (using < T(n) cells, respectively).

Intuitively, a real number x has time complexity bounded
by T if there is an effective method of finding a‘dyadic
ratianal d approximating x to within an error 2°" in T(n)
steps, or, equivalently, if there is a function ¢ € CS(x) such
that its time complexity is bounded by T (where the inputs to
¢ are written in unary notation).

Now we define some intefesting complexity classes of real

numbers.

Definition 2.3

PR = {x € R : the time complexity of x is bounded by a
polynomial function}.

PSPACER = {x € R : the space complexity of x 1is bounded by
a polynomial function}.

A real number x is said to be polynomial time (space)

computable if x € PR (x € PSPACER, respectively).

The class PR contains all rational numbers, algebraic

numbers (Theorem 3.2) and some well known transcendental

numbers such as e and w., P is a real closed field [39].

R



