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Preface

This book stems from a course on Micromechanics that I started about fifteen
years ago at Northwestera Umniversity. At that time, micromechanics was a
- rather unfamiliar subject. Although I repeated the course every year, 1 was
nevet convinced that my notes have quite developed into a final manuscript
< because new topics emerged constantly requiring revisions, and additions. 1
finally came to realize that if this is continued, then I will never complete the
book to my total satisfaction. Meanwhile, T. Mori and I had coauthored a
book in Japaness, entitled Micromechanics, published by Baifu-kan, Tokyo, in
1975. It received an extremely favorable response from students and re-
searchers in Japan. This encouraged me to go ahead and publish my course
notes in their latest version, as this book, which contains further development
of the subject and 1s more comprehensive than the one published in Japanese.

Micromechanics encompasses mechanics related to microstructures of
materials. The method emp oyed is a continuum theory of elasticity yet its
applications cover a broad area relating to the mechanical behavior of materi-
als: plasticity, fracture and fatigue, constitutive equations, composite materi-
als, polycrystals, etc. These subjects are treated in this book by means of a
powerful and unified method which is called the ‘eigenstrain method.’” In

particular, problems relating to inclusions and dislocations are most effectively .

“analyzed by this method, and therefore, special emphasis is placed on these
topics. When this book is used as a text for a graduate course, Sections 3, 11,
and 22 should be emphasmed -

Eigenstrain is a generi¢ name given by the author to such nonelastlc strams
as thermal expansion, phase transformation, and misfit strains. J.D. Eshelby,
who is a pioneer in this area, refers to eigenstrains as stress-free transforma-
tion strains in his celebrated papers (1957, 1959). The term eigenstrain should
not be confused with the term ‘eigenvalue’ which occurs in mathematical
physics, and relates to an entirely different concept.

No particular background is required of readers of this book because
necessary mathematics and physics are explained in the text and Appendix.

v



vi " Preface

Although I have tried to be fair in citing literature, I have to apologlze if some
papers do not receive proper credit or are not cited.

The sections and subsections marked with an asterisk (*), can be skipped in
the first reading, since the subjects discussed there are peripheral to the main
theme.

I wish to express my thanks to all the people who have helped me during
the course of thé preparation of the manuscript: my previous graduate
students, Zissis A. Moschovidis, Minoru Taya, Carl R. Vilmann, and Ronald
B. Castles, as well as my friends R. Furuhashi, N. Kinoshita, T. Morita, M.
Inokuti, and T. Mori. Mori receives my special thanks for having advised me
on the subject matter, for discussing with me whole chapters, and for helping
me to write Chapter 7. The manuscript reached the final form in his hands. 1
also wish to thank S. Nemat-Naser who has read through the manuscript and
has given valuable comments.

I give my thanks to Vera Fisher for her skillful typing and her great
patience with me, to the secretaries whom I involved in various aspects of the
work over the years: Erika Ivansons, Miriam *Littell, Masa Sumikura, and
Carolyn Andrews, and to my family for their patience and understanding.

Finally, I acknowledge the National Science Foundation and the U.S. Army
Research Office for their support of my research in the area of micromecha-
HICS.

November 13,.1980 ' T.M.
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General theory of eigenstrains

The definition of eigenstrains is given first. Then the associated general
solutions for elastic fields for given eigenstrains are expressed by Fourier
integrals and Green’s functions. Some details of calculations for Green’s
functions are described for static and dynamic cases.

As fundamental formulae for the subsequent chapters, general expressions
of elastic fields are given for inclusions, dislocations, and disclinations. The
stress discontinuity on boundaries of inclusions and the incompatibility of
eigenstrains are discussed as general theories.

Throughout this work, a fixed rectangular Cartesian coordinate system with
coordinate axes x,, i =1, 2, 3, is used.

1. Definition of eigenstrains

‘Eigenstrain’ is a generic name given by the author to such nonelastic strains
as thermal expansion, phase transformation, initial strains, plastic strains, and
misfit strains. ‘Eigenstress’ is a generic name given to self-equilibrated internal
stresses caused by one or several of these eigenstrains in bodies which are free
from any other external force and surface constraint. The eigenstress fields are
created by the incompatibility of the eigenstrains.

This new English terminology was adapted from the German ‘Eigenspan-
nungen und Eigenspannungsquellen,” which is the title of H. Reissner’s paper
(1931) on residual stresses. Eshelby (1957) referred to eigenstrains as stress-free
transformation strains in his celebrated paper which has stimulated the present
author to work on inclusion and dislocation problems. The term ‘elastic
polarization’ was used by Kroner (1958) for eigenstrains in a slightly different
context—when the nonhomogeneity of polycrystal deformation is under con-
sideration.

Engineers have used the term ‘residual stresses’ for the self-equilibrated
internal stresses when they remain in materials after fabrication or plastic
deformation. Eigenstresses are called thermal stresses when thermal expansion



7 y : g : Chap 1 General theory of eigen.ttr;zim

Fig. L.1. Inclusion 2

is a cause of the corresponding elastic fields. For example, when a part § of a
material (Fig. 1.1) has its temperature raised by 7, thermal stress 0, is
induced in the material D by the constraint from the part which surrounds 2.
The thermal expansion aZ, where a is the linear thermal cxpansml caefﬁdeut, '
constitutes the thermal expansion stram, :

"q-a,ar 2 ' 4 ' '(11)_‘

whereauxsthexronecketddta(mAppendlxl) The thermal expansion
mmnmthenmmca\wed*heuﬂmbcexpmdedfreelywnhlhermalo(

theconstramt&cmthe part. -
The actual nmwmo«mmmmmmm
elastic strain related to the thermal stréss by Hooke’s law. The thermal
expansion strain (1.1) is & typical example of an eigenstrain. In the elastic

1 theoryofdwmandwlowcm,numtm‘w

attribute ¢ to any source. The source could be phase transfgrmation,

- preciffitation, ‘plastic’ amﬁmwaﬁchmmnwmm
: cqmaknthchmmmethdd(wbcd!xumdeecumzz)

When an eigenstrain ¢f; upmcribedmaﬁdwmﬁha
mtma.lD(seeFlg ll)andxtmmoﬁtbm D), then

’aw!mmanwm The clastic moduli of the material are assumed 10 be

 when inclusions are under consideration.

Tty iramnamamﬁanmmucmmaﬂmmlmd

D

Q‘

w’
a{'

‘hmuu,thenﬂiscaﬂedaninhomogmeny Applied stressey will be .

. disturbed by the existence of the inhomogeneity. This disturbed, siress field
uﬂlbe simulated by an eigenstress field by considering a ﬂcummnumn

mﬂdanmtmal
mﬂmﬁg.lllsaphneembeddedmathree-dmmhﬂﬁalb

i andtumgwenon {7 as a plastic strain caused by a finite slip b, thebo-ndary

.

- P



2. Fundamehtal equations of elasticity 3

of {2 is called a dislocation loop. If €}, is created by a rigid rotation of plane
by w, the boundary of £ is called a disclination loop.

2. Fundamental equations of elasticity

In this section the field equations for the elasticity theory will be reviewed with
particular reference to solving eigenstrain problems. These problems consist of
finding displacement u,, strain ¢, and stress o;; at an arbitrary point
x(x,, x;, x;) when a free body D is subjected to a given distribution of
eigenstrain ¢f;. A free body is one which is free from any external surface of

body force.
Hooke’s law

For infinitesimal defotmetlf*l considered in this book, the total strain €
regarded as the sum of elasuc strain e;; and eigenstrain ¢},

€ =e, e ,' ; '(2‘1).
. The total strain must be ompatible,
"i('ij"" | o ‘ ‘ o ‘(2.2).

-where u, ;= du,/0x,
\'l‘heelammurelamdtostrm o;; byHookes law;

6:; Conreir= Cipui (€ — €§) ' ‘ e L (3-3)4
ot : Rase
7 Cdju(“k.'l"‘:l)v " (24)

where C,;,, mtbeelamcmo@li(W) (see AppendiiZ).ﬁdﬂn
snmmauonconmuonﬁotthcrepcawdmdmhempbyed(seeAwu
Since C,, is qhmetnc (€ ,u .;u)s we have Cuu'u"cuu“u # the
dommnwhete ¢,J~0 (2.4) becomes ;

%i; = Cijet€er = Cijhl'k.l' (2-5)
The inverse expression of (2.3) is SR
¢ — <= CiuOu ' (26)

where C;/, is the elastic compliance.
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4 Chap. 1 General theory of eigenstrains
For 1sotropic materials, (2.3) and (2.6) can be written as
g,= 2#(61; - (TI) + A(st)(ekl\' - €:k)'

€, €, ={0, -8 0ur/(1 +”)}/2'L’

t ‘)

(2.7)

where A and p are the Lamé constants, and » is Poisson’s ratio. Young’s
modulus E, the shear modulus p, and the bulk modulus K are connected by
2u=E/(Y +»), K=E/3(1 —2v), and A =2uv/(1 — 2v). The alternative ex-
pressions for (2.7) are

0= 7= {le. e + T (e -t

=T {le ) g )

o.= T {(e,= )+ gzl — 1)),

0= Ty et | 28
0. = Tg‘,’;(f,z )

0= T (e = et

and

1+
€xy E:y = E oxy’ : (29)
€, € = l—Jr—i’-a
V2 yz E yz?>
+



2. Fundamental equations of elasticity \ S

where €,, =€, +¢€,+¢, and €}, =€ + ¢} +€* Itis convenient to use (2.8) for
the plane strain case where ¢. = 0. Expression (2.9) is recommended for the
plane stress case where o, = 6., = 0,, = 0. It should be noted that solutions for
the plane stress can be obtained directly from those for the plane strain by
replacing E/(1 — »?) with E and »/(1 — ») with ».

When Hooke’s law (2.8) is rewritten for the two-dimensional case. we have

o, = L {(k+D(e,—e1) + (B-k)(e, ~ 1),
oy=;—%—T{(x'+1)(cr—(‘:)+(B—K)((X-ef)}. (291)

0, = 2:“’_(‘\')' - e.’:y)’

for the plane stress and k = (3 — »)/(1 + »). For the plane strain, we have

o = xﬂl {(x+1)((1(—5:—vcf)+(3—x)(§‘—ef—u(f)}.

Al

o -_—;—?{(x+1)(£,,—E:—vcf)+(3—x)(e‘—(’f - vt*)}

! 1
o, =2ule,, ~€*), ' (29.2)
x+1 -
= - 1p*+—1,u(c +e, et —€)
o,.=0, =0,

where k = 3 — 4.
Equilibrium conditions

When cigenstresses are calculated, material domain D is assumed to be free
from any external force and any surface constraint if these conditions for the
free body are not satisfied, the stress field can ke constructed from the
superposition of the eigenstress of the free body and the solution of a proper
boundary value problem.

The equations of equilibrium are
=0 (i=1,2,3). ~ (2.10;

ol/./



