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Preface

THE PURPOSE OF THIS BOOK is to provide an introduction to signal processing
methods that are based on optimum Wiener filtering and least-squares estimation
concepts; Such methods have a remarkably broad range of applications, ranging
from the analysis and synthesis of speech, data compression, image processing
and modeling, channel equalization and echo cancellation in digital data trans-
mission, geophysical signal processing in oil exploration, linear predictive anal-
ysis of EEG signals, modern methods of high-resolution spectrum estimation,
and superresolution array processing, to adaptive signal processing for sonar,
radar, system identification, and -adaptive control applications. The structure of
the book is to present the Wiener filtering concept as the basic unifying theme
that ties together the various signal processing algorithms and techniques cur-
rently used in the above applications.

The book is based on lecture notes for a second-semester graduate-level
course on advanced topics in digital signal processing I have taught at Rutgers
University since 1979. The book is primarily addressed to beginning graduate
students in electrical engineering, but it may also be used as a reference by
practicing engineers who want a conscise introduction to the subject. The pre-
requisites for using the book are an introductory course on digital signal proc-
essing, such as on the level-of Oppenheim and Schafer’s book, and some fa-
miliarity with probability and random signal concepts, such as on the level of
Papoulis’ book. ,

Chapter 1 sets many of the objectives of the book and serves both as a review
of probability and random signals and as an introduction to some of the basic
concepts upon which the rest of the text is built. These are the concept of
correlation canceling and its connection to linéar mean-squared estimation, and
the concept of Gram-Schmidt orthogonalization of random variables and ity
connection to linear prediction and signal modeling. After a brief review of some:
pertinent material on random signals, such as autocorrelations, power spectra,
and the periodogram and its improvements, we discuss parametric signal models
in which the random signal is modeled as the output of a linear system driven
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xii PREFACE

by white noise and present an overview of the uses of such models in signal
analysis and synthesis, spectrum estimation, signal classification, and data
compression applications. A first-order autoregressive model is used to illustrate
many of these ideas and to motivate some practical methods of extracting the
model parameters from actual data. '

Chapter 2 is also introductory, and its purpose is -to present a number of
" straightforward applications and simulation examples that illustrate the practical
usage of random signal concepts. The selected topics include simple designs for
signal enhancement filters, quantization noise in digital filters, and an introduc-
tion to linear prediction based on the finite past. The last two topics are then
merged into an introductory discussion of data compression by DPCM methods.

Chapter 3 introduces the concept of minimal phase signals and filters and
its role in the making of parametric signal models via spectral factorization.
These methods are used in Chapter 4 for the solution of the Wiener filtering
problem.

The basic concept of the Wiener filter as an optimum filter for estimating
one signal from another is developed in Chapter 4. The Wiener filter is also
viewed as a correlation canceler and as an optimal signal separator. We consider
both the stationary and nonstationary Wiener filters, as well as the more practical
FIR Wiener filter. While discussing a simple first-order Wiener filter example,
we take the opportunity to introduce some elementary Kalman filter concepts.
We demonstrate how the steady-state Kalman filter is equivalent to the Wiener
filter and how its solution may be cbtained from the steady-state algebraic Riccati
équation which affects the spectral factorization required in the Wiener case.
We also show how the Kalman filter may be thought of as the whitening filter
of the observation signal and discuss its connection to the Gram-Schmidt ortho-
gonalization and parametric signal models of Chapter 1. This chapter is mainly
theoretical in character. Practical implementations and applications of Wiener
filters are discussed in Chapter § using block-processing methods and in Chapter
6 using real-time adaptive processing techniques.

Chapter 5 begins with a discussion of the full linear prediction problem and
its connection to signal modeling and continues with the problem of linear
prediction based on the finite past and its efficient solution via the Levinson
recursion. We discuss the analysis and synthesis lattice filters of linear prediction,
as well as the lattice realizations of more general Wiener filters that are based
on the orthogonality property of the backward prediction errors. The autocor-
relation, covariance, and Burg’s methods of linear predictive analysis are pre-
sented, and their application to speech analysis and synthesis and to spectrum
estimation is discussed. The problem of estimating the frequencies of multiple
sinusoids in noise and the problem of resolving the directions of point-source
emitters by spatial array processing are discussed. Four approaches to these
problems are presented, namely, the classical method based on the windowed
autocorrelation, the maximum entropy method based on linear prediction, Ca-
pon’s maximum likelihood method, and eigenvector-based methods. We also
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discuss the problém of wave propagation in layered media and its connection to
linear prediction, and present the dynamic predictive deconvolution procedure

for deconvolving the multiple reverberation effects of a layered structure from °-

the knowledge of its reflection or transmission response. The chapter ends with
a discussion of a least-squares reformulation of the Wiener filtering problem that
can be used in the design of waveshaping and spiking filters for. deconvolution
applications..

Real-time 4daptive implementations of Wiener filters are discussed in Chapter
6. The basic ojidMtion of an adaptive filter is explained by means of the simplest
possible filter, natmely, the correlation canceler loop, which forms the elementary
building block of higher order adaptive filters. The Widrow-Hoff LMS adaptation
algorithm and its convergence properties are discussed next. Several applications
of adaptive filters are presented, such as adaptive noise canceling, adaptive
channel equalization and echo cancellation, adaptive signal separation and the
adaptive line enhancer, adaptive spectrum estimation based on linear prediction,
and adaptive array processing. We also discuss some recent developments, such
as the adaptive implementation of Pisarenko’s method of harmonic retrieval, and
two alternative adaptation algorithms that offer very fast speed of convergence,
namely, recursive least-squares, and gradient lattice . 1daptive filters.

The subject of Wiener filtering and linear esnmauon is vast. The selection
of material in this book reflects my preferences and views on what should be
included in an introductory course on this subject. The emphasis thorughout the
book is on the signal processing procedures that grow out of the fundamental
concept of Wiener filtering. An important ingredient of the book is the inclusion
of several computer experiments and assignments that demonstrate the successes
and limitations of the. various signal processing algorithms that are discussed.
A set of FORTRAN 77 subroutines, demgned to be used as a library, has been
included in an appendix.

I would like to thank my colleagues Professors T. G. Marshall and P. Sannuti
for their support. I am greatly indebted to Professor R. Peskin for making
available his graphics system on which many of the simulation examples were
run and to my graduate student Ms. ¥*M. Vail for her invaluable help in
producing most of the computer graphs. Most of all, I would like to thank my
_ wife Monica, without whose love and affection this book cotild not have been
written.

SopPHOCLES J. ORFANIDIS
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Random Signals

1.1 Probability Density, Mean, Variance

In this section, we present a short review of probability concepts. It is assumed
that the student has had a course on the subject on the level of Papoulis’ book
(1.

Let x be a random variable having probablhty dcn.my p(x). Its mean, vaf-
iance, and second moment are defined as the expectation values

m = E[x) ='r xp(x) dv = mean
o? = Ef(x - my] = f " (x — m) p(x) dx = variance

E[x3 = I ? x2 p(x) dx = second moment

These quantities are known as second-order statistics of the random variable
x. Their importance is linked with the fact that most optimal filter design criteria
require knowledge only of the second-order statistics and do not require mate
detailed knowledge, such as of probability densities. It is of primary importance.
then, to be able to extract such quantities from the actual measured data. i

8850065 ’



2 ¢ OPTIMUM SIGNAL PROCESSING

The probability that the random variable x will assume a value within an
interval of values [a,b] is given by

. .
Probla < x < b] =,J’ p(x) dx = shaded area

p(x)

X

The probability density is always normalized to unity byﬂ
f ) px)dx = 1

which states that the probability of x taking a value somewhere within its range
of variation is unity; that is, certainty. This property also implies

0’ = Elx — my’] = E[x}) — (E[x])? = E[x)] — m?

Example 1.1.1: Gaussian distribution

p(x)4

1
px) = Voo exp{—(x — m)*/2¢%)

Example 1.1.2: Uniform distribution

1/Q, for —Q/2 < x< Q/2
pix) = .
o , otherwise

Its variance is 02 = Q?%12.

p(x)

1/Q
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‘Both the gaussiar: and the uniform distributions will prove to be important
examples. In typical signal processing problems of designing filters to remove
or separate nois: from signal, it is often assumed that the noise interference is
gaussian. This assumption is justified on the grounds of the central limit theorem,
provided that the noise arises from many different noise sources acting inde-
pendently of each other.

The uniform distribution is also important.. In digital signal processing ap-
plications, the quantization error arising from the signal quantization in the
A/D converters, or the roundoff error arising from the finite accuracy of the
internal arithmetic operations in digital filters, can often be assumed to be uni-
formly distributed.

Every computer provides system routines for the generation of random num-
bers. For example, the routines RANDU and GAUSS of the IBM Scientific
Subroutine Package generate uniformly distributed random numbers over the
interval [0,1], and gaussian-distributed numbers, respectively. GAUSS calls
RANDU twelve times, thus generating twelve independent uniformly distributed
random numbers x,,x;, . . . ,x;;. Then, theirsumx = x; + x, + - - + xj3

will be approximately gaussian, as guaranteed by the central limit theorem. It -

is interesting to note that the variance of x is unity, as it follows from the fact
that the variance of each x; is 1/12:
1 1 1
U§=0§'+U§1+”'+0’3”=E+E+‘..+E=l»
The mean of xis 12/2 = 6. By shifting and scaling x, one can obtain a gaussian-
distributed random number of any desired mean and variance.

1.2 Chebyshev’s Inequality

The variance o of a random variable x is a measure of the spread of the x-
values about their mean. This intuitive interpretation of the variance is a direct
consequence of Chebyshev’s inequality, which states that the x-values tend to
cluster about their mean in the sense that the probability of a value not occurring
in the near vicinity of the mean is small; and it is smaller the smaller the variance.
More precisely, for any probability density p(x) and any A > 0, the probability
that x will fall outside the interval of values [m — A, m + A] is bounded by

px)

2
Probljx — m| = A] < =

A2

(Chebyshev’s inequality)
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Thus, for fixed A, as the variance o becomes smaller, the x-values tend to
cluster more narrowly about the mean. In the extreme limiting case of a deter-
ministic variable x = m, the density becomes infinitely narrow, p(x) = 8(x — m),
and has zero variance.

€

1.3 Joint and Conditional Densities, and Bayes’ Rule

Next, we discuss random vectors. A pair of two different random variables
X = (x,x,) may be thought of as a vector-valued random variable. Its statistical
description is'more complicated than that of a single variable and requires knowl-
edge of the joint probability density p(x,,x;). The two random variables may or
may not have any dependence on each other. It is possible, for example, that if
x, assumes a particular value, then this fact may influence, or restrict, the possible
values that x, can then assume.

Example 1.3.1: Suppose that x, is related to x, by
o X =55 +v

where v is itself a random variable which is assumed to be independent (see
below) of the random variable x,. Then, the randomness of x; arises both
from the randomness of x, and the randomness of v. But if a value of x, has
already been realized, then the only randomness left in x, will arise only
from the random variable v.

* A guantity that provides a measure for the degree of dependency of the two
variables on each other is the conditional density p(x,/x;) of x, given x,; and
p(xy/x,) of x, given x,. These are related by Bayes’ rule

p,x) = p(a/xy) plxy) = p(n/x) p(x))-
More generally, Bayes' rule for two events A and B is
p(A,B) = p(A/B) p(B) = p(B/A) p(A)

The two random variables x; and x, are independent of each other if they do
not condition each other in any way; that is, if

-

px/x) = p(xy) ot plnix) = p(x)

In other words, the occurrence of x, does not in any way influence the variable .
x,. When two random variables are independent, their joint density factors into
the product of single (marginal) densities:

px1,x) = p(x)) p(xz)
»
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The converse is also true. The correlation between x, and x;, is defined by the
expectation value ‘

Elxx) = J’fxlxzp(xhx2) dx,dx;

When x, and x, are independent, the correlation also factors as E[x;x;] =
E[x,] E[x,].

The concept of a random vector generalizes to any dimension. A vector of
N random variables

Xy

x|

AN

requires knowledge of the joint density
p(X) = p(xi, x5, . . . ,Xy) (13

for its complete statistical description. The second-order statistics of x are its
mean, its correlation matrix, and its covariance matrix, defined by

m = E[x],R = E[xX'], 2 = E[(x ~ m) (x — m)] (1.3.2)

where the superscript T denotes transposition, and the expectation operations are
defined in terms of the joint density Eq. (1.3.1); for example,

E[x} = f xp(x)d¥x

where d¥x = dx, dx; . . . dxy denotes the corresponding N-dimensional volume
element. The ijth element of the correlation matrix R is the correlation between
the ith random variable x; with the jth random variable x;; that is, R; =
E[x; x;]. Itis easily shown that the covariance and correlation matrices are related

by

Z2=R-mm
When the mean is zero, R and 2 coincide. Both R and X are symmetric positive
semi-definite matrices.

Example 1.3.2: The prgbability density of a gaussian random vector x =
(xp,x3, . . . ,xy)Tis completely specified by its mean m and covariance matrix
2; that is, :

- 1 e s
PEY= G et 5y P [ & - ET m)]
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Example 1.3.3: Under a linear transformation, a gaussian random vector re-
mains gaussian. Let X be a gaussian random vector of dimension N, mean
m,, and covariance X,. Show that the linearly transformed vector

§ = Bx where B is a nonsingular N X N matrix,

is gaussian-distributed with mean and covariance given by

m = Bm,, 3, = B3,B" (1.3.3)

The relationships (1.3.3) are valid also for non-gaussian random vectors.
They are easily derived as follows:

L[§] = E[Bx] = BE[x]
E[££7] = E(Bx(Bx)") = BE[xx"] B"

The probability density p(§) is related to the probability density p,(x) by the
requirement that, under the above change of variables, they both yield the
same elemental probabilities; that is,

pe(§) d"€ = p.(x) d'x 1.3.4

Since the Jacobian of the transformation from x to £ is a"§ = |det B|d"x,
we obtain p.(§) = p,(x)/|det B|. Noting the invariance of the quadratic form

E-m)2'E-m)=(x-m)YB"BZB)'B(x—-m,)
=(x- m)Z'x-m,)

and that det 2, = det(B I, B") = (det B)? det =,, we obtain

S S e s
p(§) = Qu)"(det Eg)”z CXP[ 2 & — m)"Z; ' mg):l

Example 1.3.4: Consider two zero-mean random vectors x and y of dimensions
N and M, respectively. Show that if they are uncorrelated and jointly gaus-
sian, then they are also independent of each other. That x and y are jointly

. .. X\ .
gaussian means that the (N + M)-dimensional joint vector z = is zero-
y

mean and gaussian; that is,

- 1 L
P® = Gmy et Ry “p[ 2 ¥k ']

where the correlation (covariance) matrix R, is

() (3 [
R, = Elzz') E[(y)u Elyx] Elyy'l] LR, R,
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If x and y are uncorrelated; that is, R,, = E[xy”] = 0, then the matrix R,,
becomes block diagonal and the quadratic form of the joint vector becomes
the sum of the individual quadratic forms:

R;' 0 1 [x
z’R;'z = [x",y"] [0 R_.J [y] = xR x + YRy
¥y

Since R,, = 0 also implies that det R,, = (det R,,)(det R,,), it follows that
the joint density p(x,y) = p(z) factors into the marginal densities:

p(x.y) = p@) = p(x) p(y)
which shows the independence of x and y.

Example 1.3.5: Given a random vector X with mean m and covariance 2, show
that the best choice of a deterministic vector X which minimizes the quantity

A

R.. = E[ee’] = minimum, wheree = x — %

is the mean m itself. That is, 8 = m. Also show that for this optimal choice
of %, the actual minimum value of the quantity R,, is the covariance X.

This property is easily shown by working with the deviation of X from
the mean m; that is, let

t=m+ A
Then, the quantity R,, becomes

Elee'] = E[(x —m — A)x'— m — A)T)
El(x — m) (x — m)] - AE[x - m)T] :
— El(x — m)] AT + AA7

RCC

=2 + AAT

Where we used the fact that E{(x — m)] = Efx] — m = 0. Since the
matrix AA” is nonnegative-definite, it follows that R,, will be minimized
when A = 0, and in this case the minimum value will be Z.

1.4 Correlation Canceling

The concept of correlation canceling plays a central role in the development of
many optimum signal processing algorithms, because a correlation canceler is
also the best linear processor for estimating one signal from another.

Consider two zero-mean random vectors x and y of dimensions N and M,
respectively. If x and y are correlated with each other in the sense that
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R,, = Elxy"] # 0, then we would like to remove such corrélations by means
of a linear transformation of the form ,

e =x — Hy : (14.1)

where the N X M matrix H must be suitably chosen such that the new pair of
vectors (e,y) are no longer correlated with each other; that is, we require

R, = Eley’] = 0 N (14.2)
Using Eq. (1.4.1), we obtain
R, = Eley’] = E[(x - Hy)y'] = E[xy’"] — HE[yy'] = R, — HR,,

Then, the condition R,, = 0 immediately implies that
H = R, R;' = Elxy"] Elyy"]"" (1.4.3)

Using R,, = 0, the covariance matrix of the resulting vector e is easily found
to be

Ree = E[eeT] = E[e(xT - YTHT)] = Re:r - Rey H" = Re: = E[(X - H.Y)XT]

or

»

R.=R,— HR, =R, — RyR;'R,, (1.4.4)
The vector '
2 = Hy = R, R;'y = E[xy"] Elyy']"'y (1.4.5)

obtained by linearly processing the vector y by the matrix H is called the linear
regression, or orthogonal projection, of x on the vector y. In a sense to be made
precise later, & also represents the best ‘‘copy’’, or estimate, of x that can be
made on the basis of the vector y. Thus, the vectore = x — Hy = x — X
may be thought of as the estimation error.

Actually, it is better to think of 8 = Hy not as an estimate of x but rather
as an estimate of that part of x which is correlated with y. Indeed, suppose that
X consists of two parts

X=X1+x2

such that x, is comelated with y, but x, is not; that is, R, , = E[x,y"] = 0.
Then,
R, = E[xy"] = E[(x, + x)y'] = R,, + R, = R, ,
and therefore,
£ =R,R)')Y=R

XY Ry;‘ y = il
The vectore = x — £ = x;, + x, — &, = (x; — X,) + X, consists of the es-
timation error X, — %, of the x,-part plus the x,-part. Both of these terms are



