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General Introduction

American Chemical Society’s Series of Chemical Monographs

By arrangement with the Interallied Conference of Pure and Applied
Chemistry, which met in London and Brussels in July, 1919, the American
Chemical Society was to undertake the production and publication of
Scientific and Technologic Monographs on chemical subjects. At the same
time it was agreed that the National Research Council, in cooperation
with the American Chemical Society and the American Physical Society,
should undertake the production and publication of Critical Tables of
Chemical and Physical Constants. The American Chemical Society and
the National Research Council mutually agreed to care for these two fields
of chemical progress. The American Chemical Society named as Trustees,
to make the necessary arrangements of the publication of the Monographs,
Charles L. Parsons, secretary of the Society, Washington, D. C.; the late
John E. Teeple, then treasurer of the Society, New York; and the late Pro-
fessor Gellert Alleman of Swarthmore College. The Trustees arranged for
the publication of the ACS Series of (a) Scientific and (b) Technological
Monographs by the Chemical Catalog Company, Inc. (Reinhold Publish-
ing Corporation, successor) of New York.

The Council of the American Chemical Society, acting through its Com-
mittee on National Policy, appointed editors (the present list of whom
appears at the close of this sketch) to select authors of competent authority
in their respective fields and to consider critically the manuscripts sub-
mitted.

The first Monograph of the Series appeared in 1921. After twenty-three
years of experience certain modifications of general policy were indicated.
In the beginning there still remained from the preceding five decades a
distinct though arbitrary differentiation between so-called “pure science”
publications and technologic or applied science literature. By 1944 this
differentiation was fast becoming nebulous. Research in private enterprise
had grown apace and not a little of it was pursued on the frontiers of
knowledge. Furthermore, most workers in the sciences were coming to see
the artificiality of the separation. The methods of both groups of workers
are the same. They employ the same instrumentalities, and frankly recog-
nize that their objectives are common, namely, the search for new knowl-
edge for the service of man. The officers of the Society therefore combined
the two editorial Boards in a single Board of twelve representative members.

Also in the beginning of the Series, it seemed expedient to construe
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v GENERAL INTRODUCTION

rather broadly the definition of a Monograph. Needs of workers had to be
recognized. Consequently among the first hundred Monographs appeared
works in the form of treatises covering in some instances rather broad areas.
Because such necessary works do not now want for publishers, it is con-
sidered advisable to hew more strictly to the line of the Monograph char-
acter, which means more complete and critical treatment of relatively
restricted areas, and, where a broader field needs coverage, to subdivide it
into logical subareas. The prodigious expansion of new knowledge makes
such a change desirable.

These Monographs are intended to serve two principal purposes: first,
to make available to chemists a thorough treatment of a selected area in
form usable by persons working in more or less unrelated fields to the end
that they may correlate their own work with a larger area of physical
science discipline; second, to stimulate further research in the specific field
treated. To implement this purpose the authors of Monographs are ex-
pected to give extended references to the literature. Where the literature
is of such volume that a complete bibliography is impracticable, the
authors are expected to append a list of references critically selected on the
basis of their relative importance and significance.

AMERICAN CHEMICAL SOCIETY

BOARD OF EDITORS
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Associates
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FOREWORD

Chemistry is old enough to look backward as well as forward. The view
is sobering, in a ‘‘space age” when it is often alleged that the rate of scientifie
progress is ever-quickening. For, a century ago, Clausius with the kinetic
theory of gases and Kekulé with the tetravalence of carbon and the forma-
tion of carbon chains had established concepts of molecular identity, strue-
ture and valency. Further, Graham’s distinction between colloids and crys-
talloids, and Mendelejeff’s and Meyer’s Periodic Law came soon afterward.
But still, variances in chemical bonding among insulators, salts (both of
which Faraday illuminated still earlier) and metals remained unspecified
50 years later. Only four decades ago was the electronic description of
valency advanced. This deliberate, even labored, pace of progress in chemi-
cal science reminds us how rare, how elusive, are really new ideas. Happily,
the chemistry of semiconductors has led to several important new concepts.

For example, the notions of the covalent molecule expanded into the co-
valent crystal (silicon, diamond) have been harmonized with evidence of
lonic states coming from suitable defects or “impurities”, (P in Ge, Al in
Si, ete.) in the same crystal. Likewise, in both this case and the dramatic
influences of imperfections (disloeations, etc.) on semiconductors, the classic
ideas of geometry of bonds, or stereochemistry, have been rebuilt. Also, the
partly-free, partly-bound electrons of semiconductor solids have liberated
thinking about electron localization in organic molecules. Indeed, deep con-
nections between organic and inorganic matter are appearing. Challenges
for chemistry in this time include especially understanding of living tissue,
which may ease man’s life, and of metals (including the uranium families),
which may be the means to keep free his life. Semiconductors are in between
these kinds of matter, and are enriching the knowledge of both. For in-
stance, dislocations have revitalized metallurgy; paramagnetic electrons
have revealed new vistas in biochemistry and biology. Both were stimulated
by semiconductor seience.

Finally, the most elegant refinements of chemistry-—its cultural badges
of purity and identity—have come to new dimensions in semiconductor
chemistry. Zone melting and refining have given the most nearly perfect
and purest forms of matter processed by man. In such crystals of silicon
and germanium the chemist’s fanciful use of Avogadro’s number (as num-
ber of atoms of a certain kind per ce) for the first time becomes literal, at
least over a range of 10°.

W. O. BAKER

Vice President—Research
Bell Telephone Laboratories
Murray Hill, New Jersey




PREFACE

The rapid growth of solid state physics and chemistry has been an out-
standing feature of postwar science and technology. While tremendous
strides have been taken in the last decade, there can be little doubt that
many phases of solid state science are still in their infancy. The field that
has progressed perhaps the farthest, largely because of the practical im-
petus given it in 1947 by the invention of the transistor, is the study of
semiconductors. Since that date, the development and application of semi-
conductor devices have proceeded at a rapid pace. At the same time there
has been an equally rapid increase both in the degree of control over the
chemistry of the materials, and in the understanding of the basic physics
and chemistry of semiconductor processes. The implications of these de-
velopments extend well beyond the field of semiconductors. Many phe-
nomena which have been studied to particular advantage in semiconductors
are of basic importance not only in other solid state systems, but in other
branches of physics and chemistry as well. It is in this latter regard that
much in chemistry can be clarified from studies of semiconductors, and it
is one of the objectives of this book to facilitate this process.

The roles of the chemist and the physicist in solid state work frequently
cannot be clearly differentiated, and likewise there is often no clear dis-
tinction between “semiconductor physics’”” and “semiconductor chemistry.”
The chemist has had to achieve, in single crystals of semiconductors, a
degree of purity and a control over the addition and distribution of im-
purities as well as over the stoichiometry, far beyond that required in
ordinary chemical systems. In addition, one seeks to relate the physical
behavior of the semiconductor (for example, the electrical, optical, and
magnetic properties) to the chemical composition, or the crystal chemistry.
The points of view of both physics and chemistry are usually necessary in
achieving this aim, and the contributions from the two disciplines are often
inextricably bound up with one another. Accordingly, this book is intended
to present the fundamental science of semiconductors from a chemical point
of view. No attempt has been made, nor would we consider it desirable, to
include only those subjects thought to be purely chemical in nature. Physi-
cal processes in semiconductors often depend directly upon the chemistry,
contribute to the understanding of the chemistry, or are such an important,
part of the general field that their omission would give the reader a picture
seriously out of balance.

In many of the chapters, heavy emphasis has been placed upon germa-
nium and silicon. This does not represent mere prejudice on the part of the
authors, but results from the fact that these two semiconductors are under
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viii PREFACE

far better control, and are much better understood, than any other. Ger-
manium and silicon serve in many ways as models for the future under-
standing of these other materials. At the same time we have sought to
select, from the voluminous literature on compound semiconductors that
work which seemed to have the soundest basis, giving only references in
the less well established cases.

This book was written with a desire to satisfy the requirements of two
kinds of readers. The first group includes chemists, either graduate students
or chemists whose major interests lie outside the particular subject of this
book, who have a desire to learn something about a field which is rapidly
absorbing the attention of more and more chemists. Secondly, there are
the chemists, physicists and metallurgists who are actively working in the
field, who may find illuminating a treatment of semiconductors which
emphasizes the chemical aspects of the subject, and which includes certain
topics not treated in other books on semiconductors.

The first two chapters give a general background of the physics and
chemistry of semiconductors. Chapters 3-7 deal with the physical chemis-
try of semiconductor systems. In Chapters 8-15 the relationship between
the chemistry and the eleetrical and optical properties of a number of semi-
conductors is discussed. Chapters 16-17 deal with properties associated with
semiconductor surfaces.

N. B. HANNAY
Murray Hill, New Jersey
February, 1959
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PRINCIPAL SYMBOLS

Helmholtz free energy

undetermined constants; components

ratio of electron to hole mobilities

velocity of light

concentration

diffusion coefficient

pre-exponential factor in the general diffusion equation

donor, acceptor

electric field

electron, hole

energy; energy of quantum states

Fermi level

energy of donor, acceptor centers

energy of trap, recombination center

energy at valence, conduction band edge

Fermi level for intrinsie semiconductor

energy gap

Fermi distribution function

growth rate

flux density

foreign atom

foreign interstitial, substitutional

Planck’s constant

h/2x

heat content (enthalpy)

magnetic field intensity

V=1

interstitial

foreign interstitial

electrical current

saturation current

current density, flux density

Boltzmann’s constant

rate constant

wave vector

equilibrium distribution coefficient, mole fraction equi-
librium distribution coefficient

extinetion coefficient

equilibrium constant
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M, ete.
M*, ete.
Mg, ete.
Ms+, etc.
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PRINCIPAL SYMBOLS

thermal conductivity

diffusion length

see Eq. (16.5)

mass of electron

effective mass

“density of states” effective mass for electrons, holes
metal; cation

ionic mobility

interstitial M atom, ete.

ionized interstitial M atom, etc.

substitutional M atom, etc.

ionized substitutional M atom, etc.

refractive index

density of electrons (number per cms3)

intrinsic density of electrons, holes

density of electrons in donor states

equilibrium electron, hole densities

Avogadro’s number

density of countable entities (number per cm?)
density of states in valence, conduction bands
tolal density of donors, acceptors (ionized plus unionized)
density of imperfections

density of un-ionized lattice vacancies, interstitials
density of ionized vacancies at M sites, lead sites, etc.
density of dislocations per cm®

momentum

density of holes

density of holes in acceptor states

ion pair

pressure

electronic charge

phonon wave vector

thermoelectric power

electronic contribution to thermoelectric power
phonon-drag contribution to thermoelectric power
gas constant

Hall coefficient

surface recombination velocity

entropy

substitutional atom

time

ion triplet
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PRINCIPAL SYMBOLS

absolute temperature
velocity ; thermal velocity

voltage
volume

lattice vacancy

anion, cation vacancies

un-ionized vacancy at an M site, lead site, ete.
ionized vacancy at an M site, lead site, ete.
thermodynamic probability

work

mole fraction

anion
coordinates

see Eq. (16.5), (16.6)
absorption coefficient

q/kT

effective diffusion layer thickness
dieleetric constant
equilibrium distribution coefficient

wave length
n; / n,

electrochemical potential (Fermi level)
chemical potential, of the ith component

mobility

Hall mobility, electron and hole mobility

xiii

lattice scattering, acoustical mode, optical mode mo-

bilities

Peltier coefficient
charge density

resistivity
conductivity

lifetime; relaxation time

frequency ; jump frequency

wave number = /¢

Fermi level (¢d, = E;)

separation between Fermi level and ¥,
quasi-Fermi levels (imrefs) for electrons, holes
surface quasi-Fermi levels for electrons, holes
wave function

electrostatic potential

electrostatic potential at surface

electrostatic potential in interior

angular frequency = 2r»




VALUES OF FUNDAMENTAL CONSTANTS

cgs uniis
Electronic charge ¢ 4.80 X 1071¢ gsu (1.60 X 107'® coul.)
Electronic mass m 9.11 X 10728 ¢
Planck’s constant A 6.62 X 107 erg sec
h = h/2x 1.054 X 1077 erg sec
Boltzmann’s constant & 1.38 X 1076 erg deg™! (8.62 X 1075 ev. deg™!)
Speed of light ¢ 2.998 X 10'° cm sec™!

CONVERSION FACTORS FOR VARIOUS UNITS OF ENERGY

lev = 1.60 X 10712 erg = 23.053 kcal/mol
1 ev corresponds to:
(a) a temperature of 1.16 X 101 °K
(b) a wave number of 8.066 X 103 cm™!
(c¢) a wave length of 1.24 micron

xiv
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