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PREFACE

This book contains a first-year graduate course in which the basic techniques
and theorems of analysis are presented in such a way that the intimate connections
between its various branches are strongly emphasized. The traditionally separate
subjects of* “real analysis” and “complex analysis” are thus united; some of the
basic ideas from functional analysis are also included.

Here are some examples of the way in which these connections are demon-
strated and exploited. The Riesz representation theorem and the Hahn-Banach
theorem allow one to “guess” the Poisson integral formula. They team up in the
proof of Runge’s theorem. They combine with Blaschke’s theorem on the zeros of
bounded holomorphic functions to give a proof of the Miintz-Szasz theorem, which
concerns approximation on an interval. The fact that I2 is a Hilbert space is used
in the proof of the Radon-Nikodym theorem, which leads to the theorem about
differentiation of indefinite integrals (incidentally, differentiation seems to be
unduly slighted in most modern texts), which in turn yields the existence of radial
limits of bounded harmonic functions. The theorems of Plancherel and Cauchy
combined give a theorem of Paley and Wiener which, in turn, is used in the Denjoy-
Carleman theorem about infinitely differentiable functions on the real line. The
maximum modulus theorem gives information about linear transformations on I?-
spaces. :



xii PREFACE

Since most of the results presented here are quite classical (the novelty lies in
the* arrangement, and some of the proofs are new), I have not attempted to
document the source of every item, References are gathered at the end, in Notes
and Comments. They are not always to the original sources, but more often to more
recent works where further references can be found. In no case does the absence of
a reference imply any claim to originality on my part.

~ The prerequisite for this book is a good course in advanced calculus (set-
theoretic manipulations, metric spaces, uniform continuity; and uniform conver-
gence). The first seven chapters of my earlier book “Principles of Mathematical
Analysis” furnish sufficient preparation. :

Experience with the first edition shows that first-year graduate students can
study the first 15 chapters in two semesters, plus some topics from 1 or 2 of the
remaining 5. These latter are quite independent of each other. The first 15 should
be taken up in the order in which they are presented, except for Chapter 9, which
can be postponed.

Some new exercises have been added in this second edition, and many of the
old ones have been regrouped so that they now appear in more or less the same
order in which the corresponding topics occur in the text.

The text contains two substantial changes. The first of these was suggested by
Jim Serrin, who showed me how to modify my earlier treatment of the differentia-
tion of measures so as to obtain stronger results with no extra effort.

The second one is the inclusion of John Dixon’s recently discovered, beauti-
fully simple proof of the global (homology) version of Cauchy’s theorem. This can
now be proved and used as soon as some basic local properties of holomorphic

*functions are known. The order of several topics has accordingly been changed.

I have also made many smaller changes in order to improve some details and
clarify some obscure points. Almost all of these were suggested by students.
colleagues, and other friends. Their constructive comments and criticisms were
greatly appreciated. I take this opportunity to thank them.

WALTER RUDIN
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PROLOGUE
THE EXPONENTIAL FUNCTION

This is the most important function in mathematncs It is defined, for every
complex number z, by the formula

Rl |

o expr) = 2.

n=0

The series (1) converges absolutely for every z and converges uniformly on every
bounded subse‘ of the complex plane. Thus exp is a continuous function. The
absolute convergence of (1) shows that the computation

o

w© © B _ 0 (@+b n
2 Z_;n_:zn'Zkv(n et = 3

n=0 n=0

is correct. It gives the important addition formula

2) exp(a)exp(b) = exp(a + b),

valid for all complex numbers a and b.
We define the number e to be exp(1), and shall usually replace exp(z) by the
customary shorter expression e*. Note that e = exp(0) = 1, by (1).
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Theorem

(a) For every complex z we have e* # 0.

(b) exp is its own derivative: exp’(z) = exp(z).

(c) The restriction of exp to the real axis is a monotonically increasing positive

@
(e)
@®

Junction, and
e” —> 00 as x —> o0, e* > 0asx —> —o0.
There exists a positive number m such that e/ = i and such that e* = 1 if and
only if z/(2mi) is an integer.
exp is a periodic function, with period 2mi.
The mapping 1t — " maps the real axis onto the unit circle.

If wis a complex number and w # 0, then w = e for some z.

PROCF By (2).e° - e7? = "7 = ¢° = 1. This implies (a). Next,

, . exp(z + h) — exp(z . exp(h) — 1 :
exp’(z) = Lu_g P A () = exp(z)}'u_'% —p(—h)——— = exp(z).

The t{rst of the above equalities is a matter of definition, the second follows
from (2), and the third from (1), and (b) is proved.

That exp is monotonically increasing on the positive real axis, and that
e — 0 as x — oo, is clear from (1). The other assertions of (c) are
consequences of e* - e™* = 1.

For any real number ¢, (1) shows that e~ is the complex conjugate of &*.
Thus

-

it it

itl2=eit,e = ¢

‘e . e-it = eit~it = % = 1,

or
3) le?] =1 (¢ real).

In other words, if ¢ is real, e lies on the unit circle. We deﬁne cos 1, sin ¢ to
be the real and imaginary parts of &”:

) ' cost = Re[e”],  sint = Im[e"] (¢ real).
If we differentiate both sides of Euler’s identity

(5) €' = cost +isint,

which is equivalent to (4), and if we apply (b), we obtain

cos’t +isin't = ie" = —sint +icost,
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so that
“(6) cos’ = —sin, sin’ = cos .
The power series (1) yields the representation

) 2 4 6
M cost=l—§?+a——l6—!+....

Take ¢ = 2. The terms of the series (7) then decrease in absolute value (except
for the first one) and their signs alternate. Hence cos 2 is less than the sum of
the first three terms of (7), with ¢t = 2; thus cos 2 < —}§. Since cos 0 = 1 and
cos is a continuous real function on the real axis, we conclude that there is a
smallest positive number #, for which cos 7o = 0. We definc

8) 7= 2. °
It follows from (3) and (5) that sin 7, = *1. Since
'sin’(:) =cost >0

on the segment (0,7) and since sin 0 = 0, we have sin #, > 0, hence
sin f, = 1, and therefore )

(9) el = |,

It follows that " = i2 = —1, ¢! = (~1)? = 1, and then ¢ = 1 for
every integer n. Also, (e) follows immediately:

(10) ) ez+2m’ — eZeZ-m‘ = .

If z = x + iy, x and y real, then e = e*¢”; hence |¢*| = *. If ¢* = 1, we
therefore must have ¢* = 1, so that x = 0; to prove that y/2# must be an
integer, it is enough to show that ¥ # 1if 0 < y < 2=, by (10).

Suppose 0 < y < 27, and

(1) et = u+iv (u and v yealj.
Since 0 < y/4 < n/2, we have u > 0 and v > 0. Also
(12) ¥ = (u+ iv)* = u* — 6utv? +v* + diuwv(u? — v?).

The right side of (12) is real only if 42 = v2; since u?> + v = 1, this happené
only when #? = v2 = }, and then (12) shows that

e =—1# 1
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This completes the proof of (d).

We already know that 1 — ¢ maps the real axis into the unit circle. To
prove (f), fix w so that |w| = 1; we shall show that w = &' for some real .
Write w = u + iv, u and v real, and suppose first thatu >'Qandv > 0. Smce
u < 1, the definition of = shows that there ‘exists a 1,0 < t < w/2, such that
cos t = u; then sin?r = 1 — #?* = v? and sincesint > 0if 0 < t < 7/2, we
have sin 1 = v. Thus w = €.

If u < 0andv > 0, the preceding conditions are satisfied by —iw. Hence
—iw = ¢ for some real 7, and w = €“**/2) Finally, if v < 0, the preceding
two cases show that —w = ¢ for some real r, hence w = €4*"  This
completes the proof of (f). :

If w # 0, put a« = w/|w|. Then.w = |w|a. By (c), there is a real x such
that jwj = €. Since la} = 1, (f) shows that a = € for some real y. Hence
w == ¢**¥_ This proves (g) and completes the theorem. 111

We shall encounter the integral of (1 + x2)™" over the real line. To evaluate
it, put 1) = sint/cos ¢ in (—w/2,7/2). By (6), ¢’ =1+ ¢*. Hence ¢ is a
monotonically increasing mapping of (—#/2,7/2) onto (-0, ), and we obtain

fao dY _ /2 9 (l)d‘ */2

= — = dt = m.
I+ x? - U+ 93(1) —en2




1

ABSTRACT INTEGRATION

Toward the end of the nineteenth century it became clear to many mathema-
ticians that the Riemann integral (about which one learns in calculus courses)
should be replaced by some other type of integral, more general and more flexible,
better suited for dealing with limit processes. Among the attempts made in this
direction, the most notable ones were due to Jordan, Borel, W. H. Young, and
Lebesgue. It was Lebesgue’s construction which turned out to be the most
successful. .

In brief outline, here is the main idea: The Riemann integral of a function f
over an interval [a, b] can be approximated by sums of the form

 JemE)

where E,, ..., E, are disjoint intervals whose union is [a, b], m(E;) denotes the
length of E;, andt, € E; fori = 1,..., n. Lebesgue discovered that a completely
satisfactory theory of integration results if the sets E; in the above sum are allowed
to belong to a larger class of subsets of the line, the so-called “measurable sets,” and
if the class of functions under consideration is enlarged to what he called
“measurable functions.” The crucial set-theoretic properties involved are the
following: The union and the intersection of any ¢ountable family of measurable
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sets are measurable; so is the complement of every measurable set; and, most
important, the notion of “length” (now called “measure”) can be .extended to them
in such a way that

ME U E U E U ) = mE) + m(Ey) + m(Ey) +- -

for every countable collection {E;} of pairwise disjoint measurable sets. This
property of m is called countable additivity. 3
The passage from Riemann’s theory of integration to that of Lebesgue is a

process of completion (in a sense which will appear more precisely later). It is of the
same fundamental importance in analysis as is the construction of the real number
system from the rationals. i

" The above-mentioned measure m is of course intimately related to the
geometry of the real line. In this chapter we shall present an abstract (axiomatic)
version of the Lebesgue integral, relative to any countably additive measure on any
set. (The precise definitions follow.) This abstract theory is not in any way more
difficult than the special case of the real line; it shows that a large part of integration
theory is independent of any geometry (or topology) of the underlying space: and,
of course, it gives us a tool of much wider applicability. The existence of a large
class of measures, among them that of Lebesgue, will be established in Chap. 2.

Set-Theoretic Notations and Terminology

L1 Some sets can be described by listing their members. Thus {x,, ..., x,)} is the
set whose members are x|, . .., x,; and {x) is the set whose only member is x. More
often, sets are described by propérties. We write

{x: P}

for thie set of all elements x which have the property P. The symbol & denotes the
empty set. The words collection, family, and class will be used synonymously with
set,

We write x € A4 if x is a member of the set 4; otherwise x & A. If Bis a
subset of 4, i.e., if x € Bimplies x € A, wewrite BC A. IfBC Aand 4 C 3,
thenA4 = B.If B C A and A # B, B is a proper subset of A. Note that & C A for.
every set 4. ' )

A U Band 4 N B are the union and intersection of 4 and B, respectively. If
{A,} is a collection .of sets, where a runs through some index set /, we write

U 4, and N A4,
a€l ac!
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for the union and intersection of {4,}:

UIA‘l = {x:x € A, for atleast one a € [}
aE

ﬂIA,, = {x:x € A, forevery a € I}.

a€

If I is the set of all positive integers, the customary notations are

GA,, and F]A,,.

n=1 n=1

If no two members of {4,} have an element in common, then {4} is a disjoint
collection of sets. ‘

We write 4 — B = {x:x € A,x & B}, and denote the complement of 4 by
A° whenever it is clear from the context with respect to which larger set the
complement is taken.

The cartesian product A, X---X A, of the sets 4,,..., A, is the set of all
ordered n-tuples (a;,...,a,) whereaq, € A, for1 = 1,...,n.

The real line (or real number system) is R!, and

R¥=R'x---xXR! (k factors).

The extended real number system is R' with two symbols, oo and —o0, adjoined, and
with the obvious ordering. If —o0 < a < b < oo, the interval [a, b] and the segment
(a, b) are defined to be

[a,b] = {x:a < x < b}, (a,b) = {x:a < x < b}.
We also write o
la,b) = {x:a < x < b}, (a,b] = {x:a < x < b}.

If E C [—o0,00]}and E # &, the least upper bound (supremum) and greatest
lower bound (infimum) of E exist in [—o0, 0] and are denoted by sup £ and inf E.
Sometimes (but only when sup E € E) we write max E for sup E.
~ The symbol

ffX->Y

means that f is a function (or mapping or transformation) of the set X into the set Y;
i.e., fassigns to each x € X an element f(x) € Y. If 4 C X and B C Y, the image
of A and the inverse image (or pre-image) of B are

f(A) = {y:y = f(x) for some x € A},
fY(B) = {x:f(x) € B}.



