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e - . ~ Preface

Our original purpose in writing this book was to provide a text for the under-
graduate linear algebra course at the Massachusetts Institute of Technology. This
course was designed for mathematics majors at the junior level, although three-
fourths of the students were drawn from other scientific and technological disciplines
and ranged from freshmen through graduate students. This description of the
M.LT. audience for the text remains generally accurate today. The ten years since
the first edition have seen the proliferation of linear algebra courses throughout
the country and have afforded one of the authors the opportunity to teach the
basic material to a variety of groups at Brandeis University, Washington Univer-
sity (St. Louis), and the Umversnty of California (Irvine).

Our principal aim in revising Iinear Algebra has been to increase the variety
of courses which can easily be taught from it. On one hand, we have structured the
chapters, especially the more difficult ones, so that there are several natural stop-
ping points along the way, allowing the instructor in a one-quarter or one-semester
course to exercise a considerable amount of choice in the subject matter. On the
other hand, we have increased the amount of material in the text, so that it can be

“used for a rather comprehensive one-year course in linear algebra. and even as a
reference book for mathematicians. |
' The major changes have been in our treatments of canonical forms and inner
| product spaces. In Chapter 6 we no longer begin with the general spatial theory
" a which underlies the theory of canonical forms. We first handle characteristic values .
in relation to triangulation and diagonalization theorems and then build our way
up to the general theory. We have split Chapter 8 so that the basic material on
inner product spaces and unitary diagomnalization is followed by a Chapter 9 which
treats sesqui-linear.forms and the more sophisticated properties of normal opera-
tors, including normal operators on real inner product spaces.

We have also made a number of small changes and improvements from the
first edition. But the basic philosophy behind the text is unchanged.

We have made no particular concession to the fact that the majority of the

v ~+ students may not be prlmanly interested in mathematies. For we believe a mathe-

matics course should not give science, engineering, or 'social science students & |
hodgepodge of techniques, but should provide them with an understanding o/
basic mathematical concepts. | -
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Preface

On the other hand, we have been keenly aware of the wide range of back-
grounds which the students may possess and, in particular, of the fact that the
students have had very little experience with abstract mathematical reasoning.
For this reason, we have avoided the introduction of too many abstract ideas at
the very beginning of the book. In addition, we have included an Appendix which
presents such basic ideas as set, function, and equivalence relation. We have found -
it most profitable not to dwell on these ideas independently, but to advise the
students to read the Appendix when these ideas arise.
Throughout the book we have included a great variety of examples of the *
important concepts whieh occur. The study of such examples is of fundamental
importance and tends to minimize the number of students who can repeat defini-
tion, theorem, proof in logical order without grasping the meaning of the abstract
concepts. The book also contains a wide variety of graded exercises (about six
hundred), ranging from routine applications to ones which will extend the very
best students. These exercises are intended to be an important part of the text.
Chapter 1 deals with systems of linear equations and their solution by means
of elementary row operations on matrices. It has been our practice to spend about
six lectures on this material. It provides the student with some picture of the
origins of hnear algebra and with the computational technique necessary to under- |
-stand examples of the more abstract ideas occurring in the later chapters. Chap- v
ter 2 deals with vector spaces, subspaces, bases, and dimension. Chapter 3 treats
. linear transformations, their algebra, their representation by matrices, as well as
1somorphisim, linear funetionals, and dual spaces. Chapter 4 defines the algebra of
polynomials over a field, the ideals in that algebra, and the prime factorization of
a polynomial. It also dea,ls with roots, Taylor’s formula, and the Lagrange inter-
polation formula. Chapter 5 develops determinants of square matrices, the deter-
minant being viewed as an alternating n-linear function of the rows of a matrix,
and then proceeds to multilinear functions on modules as well as the Grassman ring.
The material on modules places the concept of determinant in a wider and more
comprehensive setting than is usually found in elementary textbooks. Chapters 6 °
and 7 ccntain a discussion of the concepts which are basic to the analysis of a single
linear transformation on & finite-dimensional vector space; the analysis of charac-
teristic (eigen) values, triangulable and diagonalizable transformations; the con-
cepts of the diagonalizable and nilpotent parts of a more general transformation,
and the rational and Jordan canonical forms. The primary and cyclic decomposition
theorems play a central role, the latter being arrived at through the study of
admissiblz subspaces. Chapter 7 includes a discussion of matrices over a polynomial
domain, the computation of invariant factors and elementary divisors of a matrix,
and the development of the Smith canonical form. The chapter ends with a dis-
cussion of semi-simple operators, to round out the analysis of a single operator.
Chapter 8 treats finite-dimensional inner product spaces in some detail. It covers
the basic geometry, relating orthogonalization to the idea of ‘best approximation
to a vector’ and leading to the concepts of the orthogonal projection of a vector
onto a subspace and the orthogonal complement of a subspace. The chapter treats
unitary operators and culminates in the diagonalization of self-adjoint and normal
operators. Chapter 9 introduces sesqui-linear forms, relates them to positive and
self-adjoint operators on an inner product space, moves on to the spectral theory
of normal operators and then to more sophisticated results concerning normal
operators on real or complex inner product spaces. Chapter 10 discusses bilinear
forms, emphasizing canonical forms for symmetric and skew-symmetric forns, as
well as groups preserving non-degenerate forms, especially the orthogonal, unitary,
pseudo-orthogonal and Lorentz groups.
We feel that any course which uses this text should cover Chapters 1,2,and3
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theroughly, possib’y excluding Sections 3.6 and 3.7 which deal with the double dual
and the transpose of a linear transformation. Chapters 4 and 5, on polynomials and
determinants, may be treated with varying degrees of thoroughness. In fact,
polynomial ideals and basic properties of determinants may be covered quite
sketchily without serious damage to the flow of the logic in the text; however, our
inclination is to eal with these chapters carefully (except the results on modules),
because the material illustrates so well the basic ideas of linear algebra. An ele-
mentary course may now be concluded nicely with the first four sections of Chap-
ter 6, together witfi\(the new) Chapter 8. If the rational and Jordan forms are to
be included, a more extensive coverage of Chapter 6 is necessary.

Our indebtedness remains to those who contributed to the first edition, espe-
cially to Professors Harry Furstenberg, Louis Howard, Daniel Kan, Edward Thorp,
to Mrs. Judith Bowers, Mrs. Betty Ann (Sargent) Rose and Miss Phyllis Ruby.
In addition, we would like to thank the many students and colleagues whose per-
ceptive comments led to this revision, and the staff of Prentice-Hall for their
patience in dealing with two authors caught in the throes of academic administra-

tion. Lastly, special thanks are due to Mrs. Sophia Koulouras for both her skill
and her tireless efforts in typing the revised manuscript.

K.M.H. / R.A. K.
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1. Linear Equations

1.1. Fields

- We assume that the reader is famihiar with the elementary algebra of
real and complex numbers. For a large portion of this book the algebraic
properties of numbers which we shall use are easily deduced from the
following brief list of properties of addition and multiplication. We let F
denote either the set of real numbers or the set of complex numbers.

1. Addition is commutative,

rt+y=y+<z
for all z and y In F.
2. Addition is associative,

s+ +2) =@+ +2

for all z, ¥, and z in F. |
3. There is a unique element O (zero) in ¥ such that x + 0 = z, for
every z in F, | |

4. To each z in F there corresponds a unique element (—z) in F such
that z + (~2z2) = 0.

5. Multiplication is commutative,

Y = Yx
forallz and ¥ in F. |
6. Multiplication 1s associative,

z(yz) = (zy)z
forallz, y, and 7 in F. |

505637 o




Lsnear Equations Chap. 1

7. There 1s a unique non-zero element 1 (one) in F such that 21 = z,
for every z in F. c

8. To each non-zero z in F there corresponds a unique element z!
(or 1/x) in F such that xzz~! = 1.

9. Multiplication distributes over addition; that is, z(y + 2) =
xy + zz, for all z, y, and z in F.

Suppose one has a set F of objects z, y, 2, . . . and two operations on
the elements of F as follows. The first operation, called addition, asso-
ciates with each pair of elements x, y In F an element (xr + y) in F; the
second operation, called multiplication, associates with each pair z, ¥ an
element xy in F'; and these two operations satisfy conditions (1)-(9) above.
The set F, together with these two operations, is then called a field.
Roughly speaking, a field is a set together with some operations on the
objects in that set which behave like ordinary addition, subtraction,
multiplication, and division of numbers in the sense that they obey the
nine rules of algebra listed above. With the usual operations of addition
and multiplication, the set C of complex numbers is a field, as is the set R
of real numbers. |

For most of this book the ‘numbers’ we use may as well be the ele-
ments from any field F. To allow for this generality, we shall use the
word ‘scalar’ rather than ‘number.” Not much will be lost to the reader
1f he always assumes that the field of scalars is a subfield of the field of
complex numbers. A subfield of the field C is a set F of complex numbers
which 1s itself a field under the usual operations of addition and multi-
plication of complex numbers. This means that 0 and 1 are in the set F,
and that if x and y are elements of F, so are (x + y), —z, zy, and z~!
(if £ # 0). An example of such a subfield is the field R of real numbers;
for, if we identify the real numbers with the complex numbers (a 4 b)
for which b = 0, the 0 and 1 of the complex field are real numbers, and
if x and y are real, so are (zx + y), —z, zy, and 27! (if z # 0). We shall
give other examples below. The point of our discussing subfields is essen-
tially this: If we are working with scalars from a certain subfield of C,
then the performance of the operations of addition, subtraction, multi-

plication, or division on these scalars does not take us out of the given
subfield.

ExaMpPLE 1. The set of positive integers: 1, 2, 3, .. ., is not a sub-

~ field of C, for a variety of reasons. For example, 0 is not a positive integer;

for no positive integer » is —n a positive integer; for no positive integer n
except 1 18 1/n a positive integer.

ExAMpLE 2. The set of integers: . .., —2, —1,0,1,2, ... isnot a
subfield of C, because for an integer 7, 1/n is not an integer unless n is 1 or
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—1. With the usual operations of addition and multiplication, the set of
_integers satisfies all of the conditions (1)—(9) except condition (8).

ExAMPLE 3. The set of rational numbers, that is, numbers of the
form p/q, where p and q are integers and g # 0, is a subfield of the field
of complex numbers. The division which is not possible within the set of
integers is possible within the set of rational numbers. The interested
reader should verify that any subfield of C' must contain every rational
number.

ExampPLE 4. The set of all complex numbers of the form z + y\@,
where x and y are rational, 1s a subfield of C. We leave it to the reader to
verify this.

In the examples and exercises of this book, the reader should assume
that the field involved is a subfield of the complex numbers, unless it is
expressly stated that the field is more general. We do not want to dwell
on this point; however, we should indicate why we adopt such a conven-
tion. If F i1s a field, it may be possible to add the unit 1 to itself a finite
number of times and obtain 0 (see Exercise 5 following Section 1.2):

141+ - 41 =

That does not happen in the complex number field (or in any subfield
thereof). If it does happen in F, then the least n such that the sum of »
I’s is 0 is called the characteristic of the field F. If it does not happen
In ¥, then (for some strange reason) F is called a field of characteristic
zero. Often, when we assume F is a subfield of C, what we want to guaran-
tee 18 that F 1s a field of characteristic zero; but, in a first exposure to
linear algebra, it is usually better not to worry too mueh about charac-
teristics of fields.

1.2. Systems of Linear Equations

Suppose F is a field. We consider the problem of finding n scalars
(elements of F) zy, ..., z, which satisfy the conditions

Ay Aypxy + -+ + Anxa = %
Aqxy Apry + -+ 4 Azn-’b'n = ?jz

(1-1) . _
An;lxl _I_ Am2xﬂ + + Amnxn = ym

where #1,...,yn and 44, 1 <7< m, 1 <j< n are given elements
of F. We call (1-1) a system of m linear equations in 7 unknowns.
Any n-tuple (z1, ..., z,) of elements of ¥ which satisfies each of the

aima . e e - 8 e




Linear Equations | Chap. 1

equations in (1-1) is called a solution of the system. If yy = yp = -+ =
ym = 0, we say that the system is homogeneous, ¢r that each of the

equations is homogeneous.

Perhaps the most fundamental technique for finding the solutions

of a system of linear equations is the technique of elimination. We ean
illustrate this technique on the homogeneous system

201 — T2+ I3 =
:E1+3$2+4I3 = (.

If we add (—2) times the second equation to the first equation, we obtain

'—7.232 — 7$3 = ()
or, z; = —z3 Jf we add 3 times the first equation to the seeond equation,
we obtain |

ity +7x3 =0
or, z; = —I3. S0 we conclude that if (x;, Z., ;) is a solution then z; = z, =

—z3. Conversely, one can readily verify that any such triple is a solution.
Thus the set of solutions consists of all triples (—a, —a, a).

We found the solutions to this system of equations by ‘eliminating
unknowns,’ that is, by multiplying equations by scalars and then adding
to produce equations in which some of the z; were not present. We wish
to formalize this process slightly so that we may understand why it works,
and so that we may carry out the computations necessary to solve a
system 1n an organized manner.

Ior the general system (1-1), suppose we select m scalars ¢y, . . ., Cn,
multiply the jth equation by c¢; and then add. We obtain the equation

(ClAu + -+ CmAml)-’Bl + --- + (ClAln + -+ CmAmn)xn

=c+ ¢ + CmYme

Such an equation we shall call a linear combination of the equations in
(1-1). Evidently, any solution of the entire system of equations (1-1) will

also be a solution of this new equation. This is the fundamental idea of

the elimination process. If we have another system of linear equations

Buzry + -+« + BiaZn = 21
(1-2) : : :
' Buzr: 4+ -+ 4 BiaZa = %
in which each of the k equations is a linear combination of the equations
in (1-1), then every solution of (1-1) is a solution of this new system. Of
course 1t may happen that some solutions of (1-2) are r.ot solutions of
(1-1). This clearly does not happen if each equation 11 tae urizinal system
is a linear combination of the equations in the new sys.en.. Let us say
that two systems of linear equations are equivalent it each equation

in each system is a linear combination of the equations i1 the other system.
We can then formally state our observations as follows.

P
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Sec. 1.2 Systems of [anear Equaltons

Theorem 1. Equivalent systems of linear equations have exactly the
same solutrons.

If the elimination process is to be effective in finding the solutions of
a system like (1-1), then one must see how, by forming linear combina-
tions of the given equations, to produce an equivalent system of equations
which 1s easier to solve. In the next section we shall discuss one method

of doing this.

Exercises

1. Verify that the set of complex numbers described in Example 4 is & sub-
field of C.

2. Let F be the field of complex numbers. Are the following two systems of linear
equations equivalent? If so, express each equation in each system as a linear
combination of the equations in the other system.

231"-x2=0 3$1 «’32:0
2$1+.'132=0 I 3.32=0

3. Test the following systems of equations as in Exercise 2.

""".."‘:1+ x2+4x3=0 X -—_ $3=0
1+ 322+ 823 =0 e+ 323 =0
inn+ 2o+ 323 =0 |

4. Test the following systems as in Exercise 2.

20, + (=1 4 )z, + z2,=0 (1 +%) T+ 82y — 123 — z, =0

3 -— 2‘2-273 + 5174 0 ‘3'321 — i‘.’.b'z + L3 + 7.1',‘4 = ()

5. Let F be a set which contains exactly two elements, 0 and 1. Define an addition
and multiplication by the tables: -

L

01 0 1
00 1 00 O
111 0 110 1

Verify that the set ¥, together with these two operations, is a field.

6. Prove that if two homogeneous systems of linear equations in two unknowns
have the same solutions, then they are equivalent.

7. Prove that each subfield of the field of complex numbers contains every
rational number.

8. Prove that each field of characteristic zero contams a copy of the rational
number field.

A T R TR A5 A T AT & S0 R PN R S T Ve 01 T 100 SRR B3 A YT S - Wi st o o=




Linear Equations | Chap. 1

1.3. Matrices and Elementary
Row Operations

One cannot fail to notice that in forming linear combinations of
linear equations there is no need to continue writing the ‘unknowns’

Zi, . - ., Za, Since one actually computes only with the coefficients A4,; and
the scalars y,. We shall now abbreviate the system (1-1) by
AX =Y
where
| An --- 41,
A=
Ay A,
XN
N X1 i
X=1": and Y =] : .-
Tn Ym
We call A the matrix of coefficients of the system. Strictly speaking,
the rectangular array displayed above is not a matrix, but is a repre- .
sentation of a matrix. An m X n matrix over the field F is a function 3

A from the set of pairs of integers (7,7), 1 €71<m, 1 €35 < n, into the
field F. The entries of the matrix A are the sealars A(Z,j) = 44;, and
quite often it i3 most convenent to describe the matrix by displaying its
entries in a rectangular array having m rows and n columns, as above.
Thus X (above) is, or defines, an n X 1 matrix and Y is an m X 1 matrix.
For the time being, AX = Y is nothing more than a shorthand notation
for our system of linear equations. Later, when we have defined a multi-
plication for matrices, it will mean that Y is the product of A and X.

We wish now to consider operations on the rows of the matrix 4
which correspond to forming linear combinations of the equations in
the system AX = Y. We restrict our attention to three elementary row
operations on an m X n matrix A over the field F:

1. multiplication of one row of A by a non-zero scalar c;

2. replacement of the rth row of 4 by row r plus ¢ times row s, ¢ any
scalar and-r > s;

3. interchange of two rows of A.

An elementary row operation is thus a speeial type of function (rule) e
which associated with each m X n matrix A an m X n matrix e(A) One
can precisely descrlbe e In the three cases as follows:

1. B(A),',' = A;‘j if 2 T, G(A),-j == CA,-;.
2. G(A){j = A{j Af 1 r, G(A),-j == A,-j + CA;_,‘. .

3. e(4> = Ay; if ¢ is different from both r and s, e(4),; = A,;
e(A).,- == A”'.
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Sec. 1.3 : ' Matrices and Elementary Row Operations

In defining e(A4), it is not really important how many columns 4 has, but

the number of rows of A is crucial. For example, one must worry a little

to decide what 1s meant by interchanging rows 5 and 6 of a 5 X 5 matrix.
To avoid any such complications, we shall agree that an elementary row
operation e is defined on the class of all m X n matrices over F, for some
fixed m but any n. In other words, a particular e is defined on the class of
all m-rowed matrices over F.

One reason that we restrict ourselves to these three simple types of
row operations is that, having performed such an operation ¢ on a matrix
A, we can recapture A by performing a similar operation on e(4).

Theorem 2. To each elementary row operation e there corresponds an
elementary row operation e, of the same type as e, such that e(e(A)) =
e(e;(A)) = A for each A. In other words, the inverse operation (function) of
an elementary row operation exists and 1s an elementary row operation of the
same lype.

Proof. (1) Suppose e 1s the operation which multiplies the rth row
of a matrix by the non-zero scalar ¢. Let ¢ be the operation which multi-
plies row r by ¢ L (2) Suppose e is the operation which replaces row r by
row r plus ¢ times row s, r # s. Let e, be the operation which replaces row r
by row r plus (—¢) times row s. (3) If ¢ interchanges rows r and s, let e, = e.
In each of these three cases we clearly have e;(e(4)) = e(e1(A)) = A for
each 4. |}

Definition. If A and B are m X n matrices over the field ¥, we say that

B is row-equivalent to A if B can be obtained from A by a finile sequence
of elemm.

Using Theorem 2, the reader should find it easy to verify the following.
Each matrix is row-equivalent to itself; if B is row-equivalent to A, then A
is row-equivalent to B; if B is row-equivalent to 4 and C is row-equivalent
to B, then C is row-equivalent to A. In other words, row-equivalence is
an equivalence relation (see Appendix).

Theorem 3. If A and B are row-equivalent m > n matrices, the homo-
geneous systems of linear equations AX = 0 and BX = 0 have exactly the
same solutions.

Proof. Suppose we pass from A to B by a finite ‘sequence of
elementa,ry row operations: |

A=A A= ---= A, =B

It 1s enough to prove that the systems 4,X = 0 and A,.,X = 0 have the
same solutions, i.e., that one elementary row operation does not disturb
the set of solutlons
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So suppose that B is obtained from A by a single elementary row
operation. No matter which of the three types the operation is, (1), (2),
or (3), each equation in the system BX = 0 will be a linear combination
of the equations in the system AX = 0. Since the inverse of an elementary
row operation is an elementary row operation, each equation in AX = 0
will also be a linear combination of the equations in BX = 0. Hence these
two systems are equivalent, and by Theorem 1 they have the same

solutions. }}

ExaMpPLE 5. Suppose F 15 the field of rational numbers, and

2 -—1 3 2
A =1 4 0 —1]

We shall perform a finite sequence of elementary row operations on 4,
indicating by numbers in parentheses the type of operation performed.

2 —1 3 9 0 —9 3 4
1 4 0 —-1{®1l1 4 o -1{9
2 6 —1 5 2 6 -1 5
0 -9 3 4] Jo -9 3 4
1 4 0 —1{®l1r 4 o0 -1
0 —2 —1 7 0 1 3 —3
0 -9 3 4 0 0 3 —sp |
1 0 -2 13/%11 o -2 13|
0 1 % -3l o 1 } -3
0 0 1 —4 ] [0 0 1 —1
10 -2 13|21 0 0 (&
o 1 3 —zl lo 1 } =3

0 0 1 —21

1 00 i

010 -3

vairctce of A with the final matrix in the above sequence
. 1cular that the solutions of

2y — Xo + 313 + 224 = ()
X1 -+ 4x, — T4 =0
2.’171"’-62?2— $3+5$4=0
and |
* | g — *13L.TJ4 = ()
| Xy + ‘13?'124 = ()
o) | — %.’174 =0

are exactly the same. In the second system it is apparent that if we assign




