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PREFACE

THurs book is intended as an introduction to the theory of partial differen-
tial equations of the first and second orders, which will be useful to the
prospective student of modern developments, and also to those who
desire & detailed background for the traditional applications. The dis-
cussion is restricted to equations of the first order and linear equations of
the second order, with one dependent variable, so that a large part of the
work is severely classical. However, some of the material is relatively
modern, though the methods and concepts used have been restricted to
those of classical analysis. The notion of invariance under transformations
of the independent variables is emphasized, and the exposition is self-
contained as regards tensor calculus. The book might therefore be read
by a student who has a good background in ordinary differential
equations.

On the one hand, this treatment is intended to serve as preparation for
such topics as general theories of the integration of differential systems,
harmonic integrals, or the study of differential operators in function
spaces. On the other hand, the equations treated here are useful in many
branches of applied mathematics, and might well be studied from a more
general standpoint by those who are concerned with the applications.
As a branch of mathematical knowledge, our subject is notable for its
many contacts with other branches of pure and applied mathematics.
This interaction with its environment has produced not just & mass of
diverse particular facts, but a well-organized and tightly knit theory.
The aim is to present this aspect of the subject in a reasonably accessible
form.

Each chapter begins with a summary wherein the motivation and order
of topics within the chapter are described. Exercises are included in nearly
every section; many of them are particular applications, though a few
suggest further developments. A short bibliography, mainly of treatises
and monographs, is appended, together with some references from each
of the chapters. For the sake of brevity I have not sttempted to state
precise conditions of regularity for many of the results which are discussed
kerein, feeling that the student who wishes to pursue such Guestions will
in any case turn to the standard treatises.

My colleagues Professors J. D. Burk and A. Robinson read the manu-
script ut varicus stages of completion and contributed many helpful
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criticisms, for which I make grateful acknowledgement. Ii is also a
pleasure to thank Precfessor D. C. Spencer of Princeton University for
several valuable comments.

G. F. D. DUFF

Teronto, March 1956
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I

DIFFERENTIAL EQUATIONS AND
THEIR SOLUTIONS

1.1. Some definitions and examples. A relation of the form

o  u oku —0
ox 1’ " o (8x1)2"" (eaNy%| T

is known as a partial differential equation. In this equation the quantitics
&', 2%,..., zV are independent variables; they range over certain sets of real
values; or, as is often said for convenience, over a domain or region in the
‘space’ of the independent variables. A single set of numerical values
a%,..., ¥ is usually called 2 ‘point’ in that space. The quantity « which
appears in the equation plays the role of a dependent variable. That is,
« is assumed to be a function v = f(«?,22,..., ") of the independent vari-
ables, such that all derivatives of # which appear in (1:1.1) exist.
If we select a function f(z?, x%,..., #¥) which possesses the requisite deriva-
tives but is otherwise arbitrary, and if we form the expression
G S
F(xl, 2 Sl o), LB, xN)k), (1.1.2)
we obtain a compounded function which is a function of 2, 2%,..., V. In
general, this function wili not be identically zero in the domain of the
space of the z,..., ¥ which we wish to consider. However, if it does happen
that the expression (1.1.2) vanishes identically in this domain, then we
.say that the function is a solution of the partial differential equation (1.1.1).
That is, the relation w = f(zt,..., 2V), (1.1.3)

F(xl,xz xNu (110

which is known as an integral relation or integral has as a consequenceo
the truth of the differential relation (1.1.1) among the 21,..., 2%, %, and the
partial derivatives of u with respect to the 2%,..., 2%,

Throughout this book we shall limit the discussion to equations which,
like (1.1.1), contain a single dependent variable #. The number N of
independent variables will always be two or more, since if there were but
one independent variable, the equation (1.1.1) would be an ordinary
differcntial equation. We shall assume that the reader is familiar with
certain properties of ordinary differential equations which, from time to
time, will be needed in the exposition. The theory of partial differential
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2 DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS ({§1.1

equations is a natural extension of the theory of ordinary differential
equations which in turn grew from the differential and integral calculus.
The development of all these subjects has been powerfully stimulated by
physical problems and applications which require analytical methods.
Among these the questions which lead to partial differential equations are
second to none in variety and usefulness. Our present purpose being,
however, to study partial differential equations for their own sake, we shall
employ an approach and motivation which is essentially mathematical.

We recall certain basic definitions. The order of a differential equation
is the order of the highest derivative which appears in the equation. There
are also definitions which refer to the algebraic structure of the equation.
If the function F in (1.1.1) is linear in % and all of the derivatives of u
which appear, the equation is said to be linear. Again, the linear equation
is homogeneous if no term independent of u is present.

Linear homogeneous equations have a special property, which greatly
facilitates their treatment, namely, that a constant multiple of a solution,
or the sum of two or more solutions, is again a solution. Thus known
solutions can be superposed, to build up new solutions. Not only sums,
but integrals over solutions containing a parameter may be used, and for
this reason it is often possible to find explicit formulae for the solutions of
problems which involve linear equations. In comparison, the treatment
of non-linear equations is much more difficult, and the available results less
comprehensive.

Frequently it is possible to simplify the form of a differential equation
by a suitable transformation of the dependent or independent variables.
Certain standard forms have therefore been adopted and closely studied.
since their properties carry over to equations of an apparently more general
character. A well-known example of an equation in two independent
variables (denoted by x and y for convenience) which may be written in
either of two different forms is

v Pu )

=@, (1.1.4)
If in this equation we set x4y = £, x—y = %, then the rules for calculation
with partial derivatives show that, as a function of ¢, %, the dependent

variable w satisfies 2
Fu _ ypfsin &— = (1.1.5)
ogom A
When considering a differential equamon such as (1.1.1), we must guard
against the presumption that it has any solutions at all, until a proof of this
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has bteen supplied. In this connexion it might be necessary to specify the
class of functions from which solutions will be selected. For example,
the equation
3u)2 ou\?
&+
clearly has no real-valued solutions whatever; but there are infinitely many
complex-valued solutions of the form

u = ax-+By-+y,

where «, B, y are any ccmplex constants such that «248%+1 = 0. For
simplicity, we shall hereafter assume that all equations, functions, and
solutions are real-valued, unless the contrary is explicitly indicated.

Let us recall that an ordinary differential equation usually possesses
infinitely many distinct solution functions. When the equation can be
integrated in explicit analytical form, there appear constants of integration
to which may be assigned numerical values in infinitely many ways. For
instance, the equation of the second order %" = f(x) has as solution

or,

u(x) = f(x—t)f{t) dt+Ax+ B,
9

where 4 and B are arbitrary constants. Thus the choice of a single solution
function is made, in this case, by choosing two numbers. However, the
solution of the most general form of a partial differential equation will
usually contain arbitrary functions. Indeed, in the above example, if u
depended on an additional variable y, the quantities 4 and B could be
chosen as any functions of y.

Examples of the functional arbitrariness of general forms of solutions of
partial differential equations are easily found. For example,

U= f(y“z2)7

where f() is any once differentiable function, is a solution of the equation
of the first order

'
Peinn

ou o
20— =
oxr oy

0.

A general solution of the second-order equation (1.1.5) is

w,m) =1 f f 1555 dsae+ 4@+ By, (11

in which there appear two arbitrary functions.



4 DIFFERENTIAL EQUATIONS AND THERIR SOLUTIONS {§1.1

Jonversely, it is often possible to derive a partial differential equation
from a relation involving arbitrary functions. This can be done in the two
cages above. As a further example consider the general equation

u = f(2*+¢?)
of the surfaces of revolution about the u-axis in the Euclidean space of
coordinates z, ¥, 4. Suppose that fis differentiable; then we see easily that

This partial differential equation of the first order characterizes the surfaces
of revolution by a geometric property, namely, that the normal line to
the surface meets the uz-axis. Conversely, any integral of the partial differ-
ential equation has the form given above. The reader can easily verify
this by transforming the equation to polar coordinates r,  in the z, ¥ plane.

Another equation of the first order which leads to a functional relation

as integral is 2udgla,yw) _dudglzy,w) _, 1L

oz ] oy oz

where g(z, 7, %} ig a known function of the three variables z, ¢, and . Let
S=,y) = gz, y, uz, v)},

then the Jaccbian
ouw &f oueéf

dwf) oudf ouldf
oz, y) orcy 9y ox

ou (ag ég W)_Q?f(’ag &g ou)

oy\ox ' du Oxf

Tty oyom
vanishes in view of the differential equation. Therefore there must be some
functional relation independent of z and v which subsists between the two
functions © and f of these two independent variables. Consequently any
integral of the partial differential equation is defined implicitly by a relation
u = Flg(x,y, w)}.
The reader will easily verify that any such function v dces satisfy the
ditferential eqjuation. Note that this equation is not linear.
Returning o equations of the second order, let us consider the homo-
geneous equation corresponding to (1.1.4}, namely
a2 2,
Pu_u_ g, (1.1.8)
6372 dy2
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This is the wave equation which governs the vibrations of a stretched
gtring. From (1.1.6) and the transformation which leads from (1.1.4) to

(1.1.5) we see that u = f(x+y)+glx—y) (1.1.9)

is the most general solution of the equation. If, say, y is interpreted as a
time variable, as is appropriate for the string, the two terms of this solution
represent waves of arbitrary form but fixed velocity, one wave travelling
in each direction along the string.

If we admit complex numbers and replace y by ty (:2 = —1) in (1.1.8)
we see that the equation becomes
*u | Pu
.3_55+73§§=0’ (1.1.10)
and has the solution u = f(z+iy)+g(x—1iy). (1.1.11)

This form of solution suggests the introduction of a complex variable
z = -1y, and of its complex conjugate Z = x—iy. It may be remembered
that the real and imaginary parts of an analytic function

() = fle+iy) = utiv

separately satisfy (1.1.10). This is Laplace’s equation in the plane, and,
partly because of the connexion with complex variable theory just sug-
gested, it has been studied in greater detail than any other partial differ-
ential equation.

Ezercise 1. Eliminate the arbitrary functions from

(@) u= Hly/a),

®) = f@+yi+u),

() u= flx+oy)+g(z-+By),

(@) u = flz+oy)+zg(r+oy).

() u = f(zcosa+ ysina + 2) + g(xcosa+ ysina — 2).

Ezercise 2. Find a solution, containing three disposable functions, of

Bu Pu

e C = R

Ezxercise 3. Find a general form of solution for the equation in three
variables P

ax—aya'z' =f(x,?/, 2).
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Ezercise 4. The envelope of a one-parameter family of planes in Euclidean
space of the variables x, y, u, satisfies
P Pu\t
or? oyt \owdy)
Hint: Write the family of planes
u = Az-+f(A)y+9(A),
differentiate with respect to A, and show that

qu _ g2
2z~ \oy/

Exercise 5. Separation of variables. The heat equation

ouw  Pu

ot ox?
has solutions of the form u = @(t)i(x) where

P(t) = exp{—A¥t—1)},
Y(x) = sinA(z—§), cos A(z—¢),
where A, 7, { are any constants. Hence, by superposition, the integral

u = f FNe—*cos(Ax) dA

. . m\ x?
is a solution. When f(A) = 1,4 = (?) exp(— 4_t)’ {>0.
Eazercise 6. Separation of variables. The equation of the first order
Y du\?
fl(x)('é;) +f2(y)(53—/) = g1(2)+g2(y)

has solutions of the form % = ¢(z)-+y(y). Find a family of these solutions
which depends upon two arbitrary constants.

Ezercise 7. Show that the equation %,+uu, = u_, can be transformed to
the linear form 2z, = 2z, by introducing a new dependent variable z defined
by the relation 2u = — (logz),.

1.2. The classification of equations and their solutions. The
earliest and most obvious classification of partial differential equations
was made on a formal basis. Such properties as the number of independent
or dependent variables, the order of the equation, and its algebraic or
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functional structure, are necessarily the first to be considered. Further
classifications have been made according to the methods which are available
to treat special types of partial differential equations. For instance, linear
equations with constant coefficients may be said to form a category of
equations of this sort, since there are methods for finding explicit solutions
of these equations, which methods fail when applied to equations with
variable coefficients.

However, there is still another important principle by which partial
differential equations may be classified. In all studies of this subjeoct, it is
really the properties of solutions of the equations which are important,
rather than formal properties of the equation itself. In many cases the
solutions of equations formally quite similar have radically different
properties, and the equations should therefore be treated as distinct types.
Classifications based on properties of the solutions are usually less obvious
and also deeper than those based on structural properties of the equations.
Probably the most important example of such a classification is the division
into types of linear equations of the second order considered in Chapter IV.

It isdesirable that a classification should take some acecount of the manner
in which equations can be transformed by a change of independent or
dependent variables. If the properties of solutions determine the classifica-
tion, such a transformation will not alter the type of the partial differential
equation.

In most practical applications, as well as in many theoretical problems,
it is required to find one particular solution which also satisfies certain
definite additional conditions. These auxiliary conditions may take the
form of ‘initial’ or ‘boundary’ conditions, or both. It happens that certain
types of auxiliary conditions are appropriate only to certain corresponding
types of partial differential equations, in the sense that only for these
equations can a solution satisfying the boundary conditions be proved
to exist.

The problems of mathematical physics which lead to partial differential
equations usually suggest appropriate auxiliary conditions at the same
time. For instance, the problems of potential theory (Newtonian gravita-
tion) lead to elliptic equations and to Dirichlet’s problem in which boundary
conditions are specified on a closed curve or surface; and this type of
problem is appropriate for elliptic equations. Similarly, many problems
of wave motion lead to hyperbolic equations and to auxiliary initial con-
ditions which are meaningful for hyperbolic equations. When auxiliary
conditions are specified in such a way that there exists one and only one
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solution of the partial differential equation which satisfies the eonditions,
then the problem of finding the solution is said to be correctly sct, It is
natural that practical problems should be a guide in suggesting how
auxiliary conditions may be found for a given partial differential equation.
In many cases when this guide is not available, correct auxiliary conditions
are not known. However, such considerations as these, though they often
suggest the result to be established, do not provide rigorous proofs that
the solution of the problem exists.

In connexion with auxiliary conditions it is necessary to consider not
only how many functions are to be specified, and how they are to determine
the solution, but also such properties of these functions as continuity or
analyticity. The data of physical problems are never exact; we must
determine the effect upon the solution of small variations or uncertainties
in the specified functions which appear in the auxiliary conditions. If
small but arbitrary changes in the data lead to equally small perturbations
of the solution, the problem is stable, otherwise it is unstable.

The analytical nature of the solution desired is an important part of
any problem in partial differential equations. Both the intrinsic nature of
the solution, its properties of continuity and differentiability, and the
form in which it is to be expressed may determine what method is most
appropriate for the problem at hand. Often the local behaviour of the
solution can be deduced from the form of the differential equation, or from
known existence theorems. Such knowledge can also influence the form
in which the solution functions may be expressed—whether by known
functions, series, integrals, implicit functions, or other means. If, for
example, a solution is known to possess discontinuities, it is not possible
to represent these by using a power series expansion.

Among the functions commonly used to represent mathematical or
physical phenomena, those which are analytic stand out as a special class,
because of their ‘rigid’ nature. By an analytic function we mean & real-
valued function of real variables, expressible by means of convergent
power series expansions in those variables. The ‘rigidity’ of analytic
funetions springs from the fact that if such a function, together with ali
its derivatives, is known at one point, then its values at all other points
are fixed by the process of continuation with power series. If a change
in value, however small, is made at one point, the values of the analytic
function at all other points will, in general, be affected. Thus analytic
functions are not very suitable for the representation of physical pheno-
mena, in which events at different points may be quite independent of
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each other. Most of the partial differential equations which appear in
practice are themselves analytic, that is, all functions and cosfficients in
them are analytic in their various arguments; but by no means are all
solutions of all these equations also analytie.

Another feature of the study of solutions of partial differential equations
deserves our attention, namely, the division of the theory into its local
and global aspects. A differential equation is a statement regarding the
value of a function and its derivatives at a point—that is, of the function
in an arbitrarily small neighbourhood of the point—and many properties
of sclutions which can be deduced directly from the equation are local
properties such as smoothness and regularity. In the next section will be
presented existence theorems, applicable to very general analytic equa-
tions, which show that these equations do possess solutions defined in
small but finite regions—the neighbourhood of & point or of a surface, for,
example. These results must also be regarded as local.

Toc solve most practical questions, however, it is necessary to find solu-
tions defined in a given region of finite, or perhaps even infinite, extent.
This is the global or ‘in the large’ aspect. One approach to it would be to
piece together solutions which are defined locally; but this is often not
feasible, so that quite different methods are needed. In a certain sense,
a problem ‘in the large’ requires us to have at hand all solutions of the
partial differential equation, and to select, by some means, the appropriate
one. For this reason we may wish to characterize, or if possible to con-
struct, the whole ‘manifold of solutions’ of a given equation. With ordinary
differential equations, explicit integration is usually the difficult process,
while the fitting of boundary conditions is easier. The reverse is often true
for partial differential equations——it is not hard to find a general form of
solution, but it is difficult to specialize it in order to satisfy auxiliary
conditions.

These various concepts may be illustrated by a comparison of the two
second-order equations mentioned in § 1, namely the wave equation, and
Laplace’s equation in two dimensions. The wave equation in the indepen-
dent variables z, ¢ is PE

il , 1.2.13
ox? Folge ( !

and it has the general solution
u = f(z+t)-+g{z—1). (1.2.2)

The functions f and ¢ should be assumed twice differentiable, in order that
the second derivatives which appeer in the equation (1.2.1) should exist.



