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FOREWORD

MICRO-DELCON '84 is the Seventh Annual Conference sponsored by the Computer
Society of the Delaware Bay Section of the IEEE. The meeting ‘provides a one-
day forum at which professionals from all areas related to computer science
and computer engineering can exchange ideas.

The goal of our annual conference is to promote interaction among academic and
industrial professionals in the Delaware Bay area. Traditionally, each of
these sources is responsible for roughly one-half of the papers presented. 1In
the last few years, the conference has begun to attract interest well outside
of our local area, so that an area within a 200-mile radius of Newark is in-
cluded.

We are fortunate to have two excellent keynote speakers. We are grateful to
Dr. Henry Sowizral from the Rand Corporation (who is discussing the control of
control) and to Dr. John Hutchison from the General Electric Corporation who
is giving an up-to-date look at ADA.

The success of any conference is due to the authors and the referees; we
gratefully acknowledge their contribution. The conference would not exist
without the voluntary labor of all the committee members, We are also indebt-
ed to the staffs of the Departments of Computer and Information Sciences and
of Electrical Engineering of the University of Delaware, whose help was essen-
tial to the success of the conference,

John T. Lund
Conference Chairman

A, Toni Cohen
Technical Program Chairman
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A DATABASE CONSTRUCTION KIT

Mark B. Reinhold

University of Pennsylvania

Abstract

A programmer building a database is often faced with
the choice between implementing the storage structures
himself or using a general-purpose database management
system. The former requires considerable effort. The lat-
ter may be even less desirable because DBMSs are expen-
sive and unwieldy; moreover, they impose a data model
on the programmer which may not suit the problem at
hand. A Database Construction Kit has been designed
and implemented that provides modular access to many
techniques for the storage, indexing and retrieval of data.
It is intended to be used in both small application pro-
grams only needing a random-access file, as well as in the
implementation of complete personal database manage-
ment systems.

Introduction

The Database Construction Kit is a file system specifically
designed for use by applications which engage in any sort
of database-like activity, be it simple random file access
or the implementation of a database management system
for a new data model. It provides a practical alternative
to the usual choices of constructing one’s own database
mechanism or using a general-purpose database manage-
ment system. The following principles were important in
the design of the Database Kit.

o Structural Extensibility. An initial application of
the kit will be to build a database management sys-
tem for the functional data model. Central to the
functional data model is the concept of the separate
storage of data domains. To allow an efficient im-
plementation of the functional model, such domains
have been made inexpensive to create and destroy.

o Reliability. There is wide variation in the reliability
of the file systems provided by general purpose oper-
ating systems. The kit does everything in its power
to improve a database file’s chances of surviving a
machine crash, a power failure, or other minor dis-
aster. Obviously, there are some events (e.g., a disk
head crash) beyond the powerof mere software.
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e Flexibility. If some application requires a special-
purpose storage or index mechanism, it can be in-
tegrated into the file system. If a particular appli-
cation does not intend to construct B-tree indices,
it does not have to carry around the module that
implements B-trees.

e Portability. A significant amount of effort is involved
in writing a file system, even a simple one which
leaves the details of I/O to the host operating sys-
tem. The code was written in as portable a style
as possible, and no assumptions were made about
esoteric capabilities of the host operating system.

o File Access Efficiency. Both the software and the
file structure are designed to minimize the number
of 1/0O operations required for any given fask.

Concurrent database access is not provided. While the
problem of synchronising concurrent database accessors
80 that each sees a consistent view of the database is well
understood?, the details of locking and shared file access
vary so much from system to system that it is difficult to
define a simple file sharing and locking mechanism that
could be implemented on all systems. The kit is targeted
for small but sophisticated *personal® databases and ap-
plication programs for which shared access is not required.
If absolutely necessary, concurrent access to a database
could be provided by having all accessors interact with
the file system through a common server process.

Database Abstractions

The Database Kit provides two low-level abstractions—
stores and indices—from which an application builds its
own higher-level structures. A store has the ability to:

o Save a datum and return an identifier marking its
location;

o Retrieve a datum given its identifier;

e Update a datum in place, such that it is still marked
by the same identifier;

o Delete a datum from storage.



Rather than operating on arbitrary data, an index deals
with (key, value) pairs in the following ways:

o Insert a {key, value) pair into an index;
o Retrieve the value(s) corresponding to a given key;

o Delete a (key, value) pair from its index once it has
been retrieved.

A database is a collection of stores and indices. A stor-
age method is the program module which implements a
particular kind of store; an index method is the mod-
ule which implements an index. Collectively, the modules
which implement stores and indices are referred to as the
access methods.

Stores and indices are built within segments. A segment
is a logical partition of the database; a different segment
is used for each store or index. When a store or index
- is created, a segment number is returned which denotes
the segment in which the structure resides. The segment
number is used from that time onward to refer to the
structure until it—or the database—is destroyed.

Stores

The simplest type of store is that for fixed length records.
Such stores are easy to implement, but many types of
data (e.g., character strings) come in varying sises and
should be stored so as not to waste space. Thus there are
two types of stores: one for fixed-length records (record
storage) and one for variable-length records (text storage).

The following operations are defined on stores.

create(type, ...) — seg
Create a new store; type denotes the type of store to
be created. Additional parameters may specify store-
type-specific information such as the record length or
the expected average character string length. create
returns the segment number of the new store.

destroy(seg)
Destroy the store residing in segment seg.

put(val, seg) — 1d
Store the value val in segment seg, returning a storage
identifier with which it can subsequently be retrieved.

get(seg, id) — val
Retrieve the value denoted by identifier 1d in segment
seg. :

delete(seg, 1d)
Delete the value denoted by identifier id in segment
seqg.

update(val, seg, id)
Replace the value denoted by identifier sd in segment
seg with the new value val.

The storage identifiers associated with stored values are
magic. They may be freely passed around, stored away in
other stores or indices, or even converted to hexadecimal
and printed to the terminal, but no interpretation whatso-
ever may be placed upon them. This policy ensures that
no application will take advantage of knowledge about the
implementation of a storage method, thereby becoming
dependent upon that particular implementation of that
particular storage method. The single exception to this
rule is that storage identifiers from the same store may be
compared with one another. The property that all storage
identifiers for a given store are unique is often useful when
composing larger structures.

Indices

There are more types of indices than stores. The present
implementation offers B-trees? with modifications as sug-
gested by Knuth!?, extendible hash indices®, and associa-
tive string spaces. The type of index fo use for a given
application is determined by the type of the key data, the
way in which the (key, value) pairs are to be retrieved,
and the space versus time tradeoff. The space-time trade-
off is often the most important; generally, the faster an
index can be searched, the more space it occupies and the
more space it leaves unused.

In order to build an index and retrieve data from it, an in-
dex method must have some way of interpreting key data
so that keys can be compared; storage methods have no
need to interpret the data they handle. All data passed
between the application and the file system for storage or
retrieval purposes are in the form of byte sirings. Byte
strings are dynamically typed; i.e., part of their value de-
notes the type of the data in the string so that it may be
compared with other strings of the same type. The other
components of a byte string’s value give the length of the
string and a pointer to the string itself.

Index methods differ in how they allow (key, value) pairs
to be inserted. There are three possibilities for the inser-
tion mode of an index:

o Duplicate keys are not allowed;
o Duplicate keys are allowed; or
o Duplicate keys are to be overwritten.

In the last case duplicate keys are not allowed, and insert-
ing a (key, value) pair whose key is already in the index
will result in the automatic deletion of the old pair. Some
indices support all insertion modes; some allow only one.



The insertion mode of an index is specified when the in-
dex is created, along with the type of the keys of the index
and the type of the index itself.

create(type, mode, keytype, ...) — seg
Create an index. type, mode, and keytype denote the
type of the index, its insertion mode, and the type of
keys in the index, respectively. Additional parameters
may specify index-type-specific information such as the
maximum key length.

Unlike operations on a store, some of the operations on an
index must retain state information from one call to the
next. Furthermore, most of these same operations must
return a value indicating the success or failure of the file
system to service the request. Cursors solve both of these
problems. A cursor has two components: a status and a
position. The status component indicates the success or
failure of an operation and provides some additional sta-
tus information. The position component marks the posi-
tion of a (key, value) pair in an index. Applications may
access the status value, but—like storage identifiers—the
" position information in a cursor is magic. Some operations
such as snsert return cursors only to indicate a status; the
position part of such a cursor is meaningless.

insert(key, val, seg) — cursor
Insert the given (key, value) pair into the index in seg-
ment seg. The returned cursor reports the status of
the insertion operation. The type of key must agree
with the key type given when the index was created.
The type of val is irrelevant.

A second distinctive characteristic of the index methods is
the manner in which keys may be retrieved. The key being
searched for is referred to as the target key. All index
methods allow a literal match: if a retrieve operation is
performed for a target key which exactly matches a key in
the index, the search is successful and the corresponding
(key, value) pair is returned. The initial retrieve operation
is named first, since it returns the first matching pair.

first(seg, key) — key x val x cursor

Find the first (key, value) pair in segment seg whose
key matches the target key. The type of key must agree
with the key type given when the index was created.
The returned triplet contains the actual key (since the
match may not have been exact—see below), the corre-
sponding value, and a cursor which reports the status of
the retrieval and marks the position of the (key, value)
pair in the index for purposes of delete or nezt.

If there is more than one matching pair, the remaining
pairs may be obtained by means of the nezt operation.

nezt{cursor, key) — key x val x cursor
Find the (key, value) pair whose key matches the target
key and which follows the pair whose position is marked
by the given cursor.

A table is an example of a literal-match index. A table is
an array: the key of a pair is the unsigned integer index of
the value in the array. Table indices do not allow duplicate
keys, since there can be only one array element for a given
array index.

There are two variations on the literal match: the prefix
match and the pattern match. A prefix match is success-
ful if a key in the index has the target key for a prefix.
It is possible that a key is exactly equal the target key;
the status value of the cursor is used to distinguish be-
tween exact and prefix matches. Any additional keys that
match the prefix may be obtained with nezt. If there are
a number of exact matches followed by a number of prefix
matches, the exact matches are returned first. A B-tree
is a prefix-match index.

A pattern match allows a search for some pattern. A pat-
tern defines a (possibly infinite) set of strings, which set
the key must be a member of in order for the match to
be successful. A set of strings which denotes the set of all
strings containing those strings is a simple kind of pattern;
a regular expression'8 is a more powerful kind of pattern.
Pattern-matching indices allow rich and complex key spec-
ifications at the expense of being much slower than other
index methods. An example of a pattern-matching index
is an associative string space, which stores (key, value)
pairs in random order and retrieves them by scanning the
index from beginning to end.

Together, the first and nezt functions can be used to re-
trieve the sequence of (key, value) pairs whose keys match
a target key, but nothing has been said about the order of
that sequence. The natural order of an index is defined as
an ordering of the (key, value) pairs of an index which is
some function of the order in which the pairs were inserted
into that index. The natural order may be by key value,
as in a B-tree, or it may be random, as in a hash index
that uses a non-order-preserving hash function. When a
sequence of (key, value) pairs is obtained from an index
with first and nezt, the order of the sequence is the nat-
ural order of the index.

An index may be completely traversed by using a null
key. By proclamation, a null key will always match any
key in an index, so performing a first operation with a null
target key should give the very first (key, value) pair in
the index. Then nezt operations can be performed, using
the same null key, until the end of the index is reached. A
complete traversal yields all the (key, value) pairs in the
index in their natural order.



A (key, value) pair may be deleted using the cursor re-
turned by first or nezt.

delete(cursor) — cursor
Delete the (key, value) pair denoted by cursor.

In general, a delete operation implicitly invalidates all cur-
sors on the index to which jt is applied, including the
cursor returned by delete. However, some index methods
allow a delete to be followed by a nert on the resultant
cursor. All other cursors become invalid, but the cursor
returned by delete is adjusted to reflect any changes in
the internal structure of the index. The status value of a
cursor returned by delete i3 irrelevant; delete operations
either succeed or abort.

Not all indices fit neatly into this model. Therefore a
special function is introduced which is used as an escape
for those operations not yet described.

special(seg, request, ...) — cursor
Perform some special operation, denoted by request,
on the index in segment seg. The value of the returned
cursor may or may not be meaningful.

One use of the specsal function is with a table index. In
some applications the actual position of an element in the
array is unimportant, but all the used positions must be
packed down at the bottom of the array, i.e., sequentially
numbered from 0 to n with no gaps. When inserting a
new element, the key of the first unused position is found
with the special function and then used as the key for the
insertion operation.

Databases

Finally, there are functions to manipulate the entire da-
tabase. Initially a database mury be created or opened.

create(name) — fullname
Create a new database with the given name, returning
its full name.

open(name, mode) — fullname
Open an existing database of the given name, returning
its full name. mode indicates whether the open is for
read-only or for read/write operations.

When the various storage and index methods are called
to update the database, the database file is not actually
modified until the current transaction is committed. A
transaction is a set of database operations terminated by
commit. The file system does the work of guaranteeing
that transactions are atomic; an atomic transaction is one
that either runs to completion or has no effect on the
database at all!!. Until a transaction is committed, there
is no visible record in the database file that it was ever

started, so if the system suddenly crashes, the database is
left in a consistent state.

commat
Declare the end of a transaction. When commit re-
turns, any changes to the database have been irrevoca-
bly committed.

A transaction may be aborted at any time before the com-
mit point, either by the application (e.g., in case of op-
erator error), by the database file system itself (e.g., in
case of a shortage of some resource such as disk pages), or
inadvertently (e.g., in case of a machine crash). Of course
in the latter case, nothing will be around to call the abort
function. All of the functions introduced in this section
will trigger an internal abort if something goes wrong un-
expectedly.

abort
Abort the current transaction. Any pending database
updates are thrown away and forgotten.

When the application is finished with the database, the
database file should be closed.

close
Close the currently open database.

Using the Kit

In order to provide a more intuitive feel for how the Data-
base Kit is used, this section discusses how one could im-
plement database management systems for the the func-
tional, relational, and network data models using the da-
tabase abstractions just presented.

The Functional Data Model

The functional data model describes information in terms
of entities and functions that define mappings between
entities!®. For example, in a university database a partic-
ular student and the courses he is taking may be modelled
as a function mapping a student entity to a set of course
entities.

Functions exist in several varieties. Functions may be de-
fined with sero or more parameters, and functions may
return a single value or a {possibly empty) set of values.
A function that returns a singleton is expressed with a
single arrow (—), while a function that returns a set is
expressed with a double arrow (=>).

A special function is defined for each type of entity: the
generator function for an entity type has no parameters
and returns a set containing all the entities of that type
in the database.



Here are some sample functions on the university data-
base:

person() = entity

name(person) — string

course(student) => course

grade(course, student) — integer

The database must contain some metadata—data describ-
ing the structure of the rest of the data——so that the func-
tional DBMS can figure out how to evaluate functions. For
each function, a function descriptor contains the follow-
ing items: how the function is stored, what segment(s) it
is stored in, the number of parameters it takes and their
types, the result type of the function, and whether the
function returns a single value or a set. Two segments
are used for the metadata. A record store contains the
function descriptors, and an extendible hash index maps
function name strings into the storage identifier of the
corresponding function descriptor.

The type of an entity is denoted by the storage identifier
of the function descriptor for its generator function. Each
entity within a type is assigned an instance number unique
to that entity type. Generator functions are stored in a
table index whose value sise is sero; the table is used only
to uniquely identify entities—by their instance numbers—
and to traverse that set of instance numbers. A table with
a gero value sise is just a bitmap, which is a very efficient
way of storing a generator function. When a new entity
is created, the key of an empty table position is obtained
with the special function.

A 1-to-1 function is stored in a table whose key is the

domain and whose value is the range. A 1-to-n function

is stored in two segments. A text store holds the range
set of the function; a table maps the domain entity in-
stance number to the storage identifier of the correspond-
ing range set. An n-to-1 function is stored in an asso-
ciative string index with the domain tuple as the key; a
table would be inappropriate here as such functions tend
to be very sparse. If fast access were absolutely necessary,
a B-tree or extendible hash index could be used instead.
n-to-n functions are implemented in a manner similar to
1-to-n functions, except that an associative string index
is used instead of a table to map domain tuples into range
set storage identifiers.

Only small values such as entity numbers and integers can
be directly passed around as function values. Character
strings are treated in the following way. A global string
space is maintained in a text segment and in a B-tree;
the B-tree maps strings into string numbers, and the text
segment maps string numbers back into strings. Functions
dealing with strings refer to strings in these segments.
This approach would be duplicated for any other data
types with large values.

The Relational Data Model

See Date* for an introduction to the rélstional data model.
Assume for simplicity that tuplesin a relation are of fixed
length. A single relation may be stored in a table index,
one tuple per record, where the key of each record is its
row number in the relation. An index is used here in-
stead of a store because it allows an efficient traversal of
the rows of the relation. An index on a relation can be
constructed in a B-tree or extendible hash segment. Key
uniqueness may be enforced by creating the index to not
allow duplicate keys.

The metadata required for a relation includes the number
of the table segment containing the relation, the number
of fields in each tuple and the type and length of each field,
and any information required to link a relation with its as-
sociated indices. A descriptor record for each relation is
kept in a record store; while an extendible hash index pro-
vides a mapping from relation name to relation descriptor
record storage identifier. The descriptor record may be
extended to describe any integrity constraints applicable
to the relation.

The Network Data Model

Again, Date* provides a readable presentation of the net-
work (CODASYL) data model. A simple implementa-
tion of the network data mode] would use a record store
for each record type and then construct the traditional
pointer chains from record to record within each set. How-
ever, a design which takes more advantage of the file sys-
tem’s capabilities is possible.

A reccrd store is used for each record type. A table index
is used to store descriptor records for each record type
containing the number of the record segment, the type
and length of each field, and any constraints that apply
to the record (e.g., a field must be unique within a set).

A set is implemented by means of two segments. A ta-
ble index maps an owner record number to a member set
pumber, and a text segment maps the member set number
to a set, which contains sero or more member record stor-
age identifiers. Since record numbers only identify records
within a segment, a schema table must be kept describ-
ing each set in terms of its owner record type, member
record type, and the numbers of the segments contain-
ing the owner-set table and the sets themselves. Indices
that provide fast access from key to record may be con-
structed on B-trees or extendible hash segments as neces-
sary.

A Real Application

The first application of the Database Kit was to construct
a program to maintain a database of bibliographic refer-



ences in the style of REFER!?; that program was used to
prepare the references for this paper.

The structure of the bibliographic database is as follows.
Each entry consists of one or more fields of text (author,
title, date, etc.). The keys for an entry are concocted from
all words in that entry; keys which are numbers outside
of the range 1800-2000 (i.e., not viable year numbers) are
ignored, as are keys which are on a list of the 100 most
common English words. All keys are stored in lower case
and are truncated to twenty characters. A database con-
tains the following segments:

entid — entry text store; contains actual entries
entsctid — {entid}  text store; contains sets of entry ids
key — entsctid B-tree; maps key to entry set id

0 — entid table of all entries

Entries are kept in a text store. Since a key may belong
to more than one entry, the value of a key in the key index
is the storage identifier of a text string containing one or
more storage identifiers for the entry store. A table is used
to keep track of all entry identifiers so that all the entries
in the database can be produced, e.g., in order to unload
the database into a text file.

A bibliographic citation is specified by giving a set of keys
for the entry. For example, volume one of Knuth’s The Art
of Computer Programming series could be cited with the
keys “Knuth Art Computer 1973." Each key is retrieved
from the key — entsetid index; each of these entsetids
produces a set of entids, the intersection of which pro-
duces the set of storage identifiers corresponding to the
desired references. The file system performs quite well
in this application; it takes approximately 0.15 CPU sec-
onds and only 9 digk reads for the program look up all
the references in this paper from a database of about 100
entries.

Implementation Overview

This section briefly describes how the implementation of
the Database Kit meets its design goals. A soon-to-appear
technical report!® gives extensive details on the implemen-
tation. .

Software Structure

The initial implementation of the database kit was done
on a VAX under the VMS operating system and the Eunice
UNIX* emulator®. It is written entirely in the C program-
ming language® according to the UNIX version 7 standard.
The implementation-depends upon no special features of
the VAX, so it could be ported to a PDP-11 with minimal
effort. High quality compilers are now becoming available
for larger microcomputers (e.g. 68000-based systems), ex-
tending the set of machines to which this implementation
could be transferred. Of course, it will run on any VAX
with DEC’s VMS operating system.

*UNIX is a trademark of Bell Laboratories.
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Pigure 1. Software Layer Structure

The file system is organised as a set of layers, one on
top of the other. Each layer provides some abstraction in
the form of a set of functions and procedures to the layer
above it, and uses the abstraction provided by the layer
below it to construct its own abstraction. Externally, a
layer is defined only by the services it implements and the
gervices it uses; the implementation of the layer is com-
plately invisible to the outside world. The independence
of Interface and implementation allows different versions
of a layer to be used in different versions of the file system.
Figure 1 depicts the overall structure of the file system.

The PIO layer uses the host’s file system to provide the
abstraction of a file of pages pumbered from sero. Under
VMS, this is a fairly direct mapping to the file 1/O services
of the RMS record management services component®. To
maximise portability, all that is assumed of the host op-
erating system is that it can write disk pages atomically,
i.e., a write operation either completes successfully or does
nothing at all.

The purpose of the page cache layer is to reduce file ac-
tivity by keeping the most frequently referenced database
pages in memory. The abstraction provided by the PC
layer is that of a set of page frames, each of which con-
tains a single page of the database file. The number of
page frames may be varied by means of a compile-time
constant. The PC layer uses a modified least-recently-used
(LRU) algorithm to select which pages are to be kept in
the cache. The LRU algorithm takes advantage of addi-
tional knowledge about how a page frame is intended to
be used, as suggested by Stonebraker!?. When a page is
requested, information such as the manner in which the
caller intends to access the page in the near future and
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whether it will be written or not is used to determine the
length of time for which the page will remain in the cache.

The page-level transaction layer handles the database up-
date process that takes place during a transaction and is
finished up at transaction commit. It is also responsible
for maintaining the freelist—the list of unused pages in
the database file—during a transaction. Further discus-
sion of this layer requires knowledge of the file structure,
and will be postponed until the next subsection.

The segment layer uses the pages provided by the PT layer
to build database segments. A segment is a set of pages
arranged in a linear address space that is not necessarily
contiguous; i.e., some page numbers may not map to valid
disk pages. Each page contains a fixed number of bytes.
The storage identifier for a particular byte is composed of
the number of the page within the segment and the offset
of the byte in that page. Each segment has a type attribute
which describes the type of structure it contains. This
model is much like that of the Relational Storage System
used in the System R relational database management
system!.

The access method layers, IM and 8M, use the segments
provided by the SEG layer to build stores and indices.
Unlike most layers of the system, the IM/SM layer consists
of several modules. One module is present for each access
mephod in use; two additional modules contain supporting
code for segment space management and other utilities
such as byte string comparison and hashing.

The outside world only calls functions in the toplevel. The
functions available to the application program correspond
directly ‘to those outlined in the section on database ab-
stractions. The functions for manipulating indices and

Root
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Indirect
Pages

Data
Pages

stores are overloaded: there is one set of functions for
all operations upon stores and one set of functions for all
operations upon indices. For example, there is a single
function to delete a (key, value) pair from an index given
a cursor obtained from first or nezt, which function is used
on each and every index when that operation is required.
The toplevel layer determines which access method mod-
ule to call by examining the type attribute of the segment
in question. :

The toplevel layer is also responsible for handling and re-
porting transaction aborts. If the host operating system
provides the required services, the toplevel layer protects
against internal errors in the file system code by catch-
ing system error traps and using them to initiate internal
aborts. Information about a transaction abort is made
available to the application through two global variables
and a user error trap function.

File Structure y

In order to implement efficient and independent segments,
simple atomic database updates, and to take advantage of
locality of reference within a segment, the database file is
structured as a tree (see figure 2). At the lowest level (the
PIO layer) the file appears as a collection of sequentially
numbered pages. The next two layers of the file system
(PC and PT) transform this view into a tree of pages,
with the seroth page as the root. The root page points to
a set of subtrees, each of which constitutes a segment. The
root of each segment subtree is the segment header, which
contains the number of pages allocated to the segment, the
type of the structure stored in the segment, and direct
and indirect mapping pointers to the data pages in the
segment.

Pigure 3. Database File Structure



Several attributes of the file structure are variable and
may be changed by means of compile-time constants. This
allows a certain amount of *fiddling® to tune the system
for particular applications. The most important attribute
is the file page sise, which affects all other file structure
constants. Pages are typically between 2° and 2'? bytes
long and are required to be integer multiples of the disk
page size of the host operating system. No part of the file
system depends upon a particular page size; the current
implementation has been verified to work with page sizes
of 512, 1024, and 2048 bytes. Pages within a segment are
denoted by segment page numbers, which are typically
two or three bytes long, allowing from 2!¢ to 234 pages in
a segment. The number of pages denotable by a segment
page number may be smaller or larger than the structural
limit of the segment dictated by the page size constant.

Let s be the file page size measured in units equal to the
size of a segment page number. If ¢ units are required to
store other information, then the segment header consists
of s — ¢+ mapping pointers. All but two of the mapping
pointers point directly to data pages; thus the first s -1 -2
data pages may be accessed directly from the segment
header page. The segment header points to one indirect
mapping page, which points to s data pages; the segment
header also points to a doubly indirect mapping page,
which points to s indirect mapping pages, each of which
in turn points to s data pages. In terms of the page sige
8, a given segment may contain s + 2s —§ — 2 data pages.
For a page size of 1024 bytes and a segment page number
sige of two bytes, s = 512, 8o if two units are taken up for
other information (3 = 2}, the segment capacity is 263164
pages (260 megabytes). In this case, the structural limit is
greater than the limit imposed by the size of the segment
page number, 8o each segment in fact would be limited to
65535 data pages, or 67 megabytes.

Since segments are naturally subtrees of the tree struc-
ture of a database file, they incur little extra overhead of
themselves. It is not unreasonable to consider a database
of hundreds of small segments, each containing a single
data domain for some data model. Segments can be cre-
ated and destroyed by the SEG layer independently of the
data structures built within them. This separates seg-
ments from the structures they contain and isolates each
segment from all others in the database, reinforcing one’s
faith in the file system. A bug in the module that imple-
ments B-tree indices may cause some random page to be
overwritten, but only in the segment containing the faulty
B-tree; other segments will be left alone.

The tree-based file structure helps reduce file activity by
decreasing the access cost for a page as locality of refer-
ence within a segment increases. n references to a small
area within a segment are cheaper than n widely spaced

references in a segment, which in turn are much cheaper
than n references to entirely different segments. There is
also 2 bias in favor of segments whose data is clustered at
the bottom end: references to the first s — 1 — 2 pages in
a segment will be cheaper than references to the next s
pages, which in turn are cheaper than references to the re-
maining s? pages. This is due to the intentionally slightly
lopsided mapping scheme described above.

The index and storage methods can improve locality of
reference through the use of near-mode allocation. When
a new page is created in a segment, the caller can spec-
ify the page number of an existing page. The SEG layer
tries—but is not guaranteed—to allocate the new page as
near as possible to the old page. Near-mode allocation
only works in terms of the internal segment structure; it
does not attempt to provide physical contiguity in the disk
file.

Another advantage of the tree-based file structure is that
it admits a simple algorithm for performing completely
atomic updates. When a segment page numbered d is to
be written, a function in the SEG layer recursively de-
scends the tree, beginning at the root. When page d is
reached, a call to the PT layer finds an unused file page
for it and writes it to that page through the cache. The
PT layer returns the number p of the file page assigned to
the segment page. The pointer to the old copy of d in the
page immediately above is modified to point to its new
location in the file, namely the file page numbered p.

The recursion unravels until the root page is reached. The
appropriate pointer in the root page is modified, but the
root page is not written until the transaction is commit-
ted. Since disk write operations are assumed to be atomic,
the final action of writing the root page—always back to
file page sero—updates the entire file in a single atomic
operation. Untii the modified root page is written, all
newly written pages are still in the freelist. If a trans-
action aborts before the root page is written, the data-
base is left in a consistent state. This scheme was in-
spired by Paxton’s transaction mechanism for distributed
file systems!4.

Just before the root page is written to commit the trans-
action, the freelist is updated. As pages are allocated and
freed during a transaction, a list of recently freed pages is
built using pages still in the freelist. A separate list of re-
cently freed pages is required because a page freed during
a transaction cannot be re-used in the same transaction.
If it were rewritten and the transaction were aborted then
the database would not be left in a consistent state. At
commit time, the recently freed page list is merged with
the old free page list to form a single new freelist. Because
the freelist update takes place immediately after the rest




Table 1. Index Method Performance

Index Method | A-string | B-tree | ISAM
Construction

disk writes 1512 5023 5082
CPU time 67.95 113.17 32.80
page faults 597 578 343

file sise 228 322 396

space utilisation 96.9% 70.1% 46%
Retrieval

disk reads 109 118 180
CPU time 70.71 2.61 4.63
page faults 38 45 5
cache hit ratio 99.7% 95.7% —

of the file pages are updated and just before the root page

is written to commit the transaction, aborting the transac-
tion will cause the file pages containing the recently freed
page list to remain in the old freelist.

Performance

Each storage method was tested by randomly executing
put, get, update, and delete operations on a large fixed
quantity of data. Both the record and text storage meth-
ods averaged between 80 and 100 operations per second.

Each index method was tested by building an index on
the first 5000 words in the system spelling dictionary. The
fifteen character key is the word itself; the four character
value is the word’s index in the dictionary. 250 keys known
to be in the index were retrieved in random order. The
results of this test are presented in table 1.

For comparison, the same tests were performed using the
indexed sequential (ISAM) file facility provided by the
record management services component of VMS®. While
VMS ISAM consumed less CPU time in constructing the in-
dex, it produced a file that was noticeably larger and more
than half empty. The B-tree index method performed sig-
nificantly better than VMS ISAM in the retrieval test in
terms of both CPU time and disk reads. The lower page
fault statistic for retrieval from the ISAM file is explained
by the fact that the retrieval was done in the VMS com-
mand language rather than by an explicit program. The
command language interpreter is permanently resident in
memory, while a program must be paged in from disk as
it runs.

The extendible hash index method was not evaluated in
this test. The implementation is not as efficient as was
hoped for; it produced a file of over 1000 pages for the
test data. Extendible hashing works best with large hash
buckets; i.e., on the order of 2! bytes. In this imple-
mentation a bucket is a single page (2!° bytes), and the

directory is split many more times than it ought to be just
in order to make more space in the index. The retrieval

" performance of the extendible hash index method is ade-

quate, but the insertion performance and space utilisation
are unacceptable.

Conclusion

Aside from the poor performance of the extendible hash
index method, several other problems require attention.
Currently, the module in the IM/SM layer which allocates
variable-length byte strings in a text store cannot handle
strings longer than the length of a database page. This is
not too serious a limitation, but some facility shonld be
provided for storing large contiguous chunks of data.

Two minor enhancements would significantly improve the
performance of the SEG layer. When new pages are cre-
ated in a segment, free page positions are found by recur-
sively traversing the map pages of the segment. Typical
segments will have only a few map pages anyway, so the
search is not overly expensive. However, several page ac-
cesses could be saved by using a bitmap to keep track
of which pages in the segment are defined and which are
undefined. This strategy would only cost 8 pages (of 21°
bytes each) for a completely full segment and would make
the page allocation process much more efficient, especially
in large segments.

The second enhancement is to provide some space in the
segment header structure for use by the access methods.
Each access method must store some information about
how it structures data in a segment; typically this is done
by reserving the zeroth page of the segment for that pur-
pose. But pages are large and usually only ten or twenty
bytes of data are involved. It would be more efficient to al-
low access methods to store and retrieve an access method
header which is maintained in part of the segment header.
This would reduce the number of direct mapping pointers
that can be stored in a segment header, but the loss would
be repaid by not having to access an additional page for
necessary structural information.

At the moment, alphabetic case is significant in all the
index methods which support character string keys. It is
not clear whether ignoring case for character string keys
in indices is a desirable thing or not; for many this is
a religious issue. This problem should be thought out
and a way to enable and disable case folding should be
implemented.

The single pattern-matching index method, the associa-
tive string space, supports only a limited sort of pattern.
Full regular-expression pattern matching'® would signifi-
cantly extend the power of associative string indices. One
problem lies in implementing a regular-expression search



