SECOND EDITION

STRUCTURES AND
ABSTRACTIONS

AN INTRODUCTION TO COMPUTER SCIENCE
WITH TURBO PASCAL, (5.X, 6.X, 7.0)

WILLIAM 1. SALMON

STRUCTURES AND ABSTRACTIONS
An Introduction to Computer, Science

IRWIN
Burr Ridge, Illinois
Boston, Massachusetts
Sidney, Australia

Dedicated to
the Spirit of Liberal Education,
wherever it survives.

This symbol indicates that the paper in this book is made of
recycled paper. Its fiber content exceeds the recommended
minimum of 50% waste paper fibers as specified by the EPA.

© RICHARD D. IRWIN, INC., 1992 and 1994

All vights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of the publisher.

Cover painting:

Copyright 1992 by VAGA New York
Paul Klee (1879-1940)

La belle jardiniere

(ein Biedermeiergespenst), 1939.1237

Reproduced by permission.

Senior sponsoring editor: Tom Tucker

Developmental editor: Lena Buonanno

Marketing manager: Robb Linsky

Project editor: Denise Santor

Production manager: Laurie Kersch

Compositor: Bill Salmon, Interactive Educational Systems
Cover designer: Amy Osborne

Printer: Von Hoffman

The programs in this book have been included for instructional use only. They have been
carefully tested but are not guaranteed for any particular use. The author and the
publisher accept no Habilities for the use of the programs.

Library of Congress Cataloging-in-Publicatiori Data

Salmon, W. (William 1.)

Structures and abstractions : an introduction to computer science

with Turbo Pascal / William 1. Salmon. — 2nd ed.
. om.

Includes index.

ISBN 0-256-12667-4 v

1. Pascal (Computer program language) ‘2. Turbo Pascal (Computer
file) 3. Data Structures (Computer sciencé) 4. Abstract data types
(Computer science) L Title.
QA76.73.P25253 1994
005.26"2~—dc20 93-38983

Printed in the United States of America
1234567890 VH 87654321

Preface

It is a pleasure to respond to the teachers and students who used this book in its first
edition and to incorporate many of the improvements they suggested. As in the first
edition, this book is intended for a first college-level course in computer science,
emphasizing modern software engineering practice. The main issues are procedural
and data abstraction, modular and hierarchic software design, program structures and
data structures, and first glimpses of informal verification and complexity analysis. The
goal is to provide a survey of the important concepts in our field, suitable for courses
lasting from one quarter to two semesters. Pascal is the illustrative programming
language, but the language is not the main mission, and there is no attempt to cover all
of Pascal’s syntax. The spirit here has been much influenced by the new ACM/IEEE
curriculum guidelines.

What's new in this edition?

The general principles of software engineering and abstraction are introduced at the
beginning of Chapter 2, as a lead-in to the explicit techniques for problem solving. The
problem-solving techniques now make explicit use of procedural abstraction and
encapsulation. New case studies in this chapter set up the solutions of two problems to
be attacked in Pascal in later chapters.

The material on text files has been removed from Chapters 4 and 10 and placed in
Chapter 17, although it still features a modular, three-level organization. The new
organization allows text file material to be taught either early or late in the course, at the
discretion of the instructor. To introduce text files early, simply cover Sections 17.1 and
172 right after Sections 4.3 and 4.4, respectively, and Sections 17.3-17.6 right after 10.3.
(This sequencing is clearly marked in the text and Table of Contents.) Then the
remaining sections of Chapter 17 can be covered any time after Chapter 14. Further
details appear after this preface, under the heading Teaching from This Text.

The sections on testing and debugging, at the ends of many chapters, now contain
extensivelists of actual error messages resulting from example errors, usingareal-world
compiler (Borland/Turbo Pascal 7.0). Other Pascal systems give similar messages in
most cases.

iv

Preface

An optional Section 5.6 has been added, explaining how to avoid global variables
entirely, when this is desired.

Anew Chapter6introducesthe IF. . THEN. . ELSEand WHILE. . DO control structures,
so that students can use decisions and loops atan earlier point in the course. This isdone
with minimum yntax, to keep attention focused on procedural abstraction at this point
in the course.

An optional Section 6.5 introduces the concept of recursion, for those instructors
wishing to raise the issue this early, and for those students who wonder what happens
if a procedure calls itself. The full treatment of recursion appears in Chapter 12, right
after the full treatment of iteration. The chapter on recursion provides more exercises
and projects than before. _

The coverage of CASE structures has been expanded in Section 9.4.

InSections 11.1-11.4, the explanations of loop invariants have been rewritten tomake
it clearer how a loop is designed to terminate correctly.

A case study on selection sorting has been added to the chapter on arrays (Chapter
14). The chapter on searching and sorting (Chapter 19) now has a section on insertion
sort. This means that the text now provides complete coverage of selection, insertion,
and quicksorts. Chapter 19 can now be covered right after Chapter 14 if the instructor
desires.

The first example of an abstract data type is now a Fract ion type instead of String
(Section 16.2).

Section 19.3, on big-oh notation, now provides an informal heuristic explanation in
addition to the formal mathematical one.

In the Turbo Pascal edition, Chapter 21 now introduces object-oriented program-
ming (OOP), using lists, stacks, and queues as examples.

About a third of the questions, exercises, and projects in the book are new.

There are 14 new sidebars, averaging almost a page in length, providing a glimpse
of some of the frontiers in computer science. These are substantial quotes from journals,
magazines, and books, chosen for their provocative, often controversial ideas and
engaging writing styles. They are intended to convey the excitement and rapid changes
incomputer science, while showing the pervasive effects of computing onour everyday
lives and even on our philosophical outlooks.

Themes that continue from the first edition

* Students practice procedural abstraction from the beginning of the course.
Algorithms are presented from a hierarchical viewpoint that encourages modular
design from the very beginning, with constant emphasis. Unlike most other
books, there is no need to apologize later for early monolithic programs, or to
“unteach” early bad habits.

* Chapter 2 provides eight explicit problem-solving techniques before students
begin Pascal coding. These techniques are used repeatedly throughout the rest of
the book and become so ingrained that they provide a foundation for creative
solutions to new problems.

* Students are taught to picture both the data structures and the actions that occur
in a program. The book contains many “animations” (snapshot sequences) of
program execution and pictures of the data structures—380 diagrams in all. (For
an example, see Section 6.4.)

DPreface

¢ Good programs don’t work correctly by luck; they are engineered so that they
have to work correctly. We introduce simple techniques for checking the correct-
ness of algorithms before writing programs (Chapter 11).

¢ Recursion is not more mysterious or difficult than iteration—it’s just less familiar.
These two techniques for repetition are equally important and each illuminates
the other. Therefore we present recursion and iteration side by side, with frequent
comparisons, beginning in Chapter 12.

Meeting the ACM/IEEE guidelines for the 1990s

Structures and Abstractions satisfies the new curriculum recommendations of the
Association for Computing Machinery (ACM) and the Institute of Electrical and
Electronic Engineers (IEEE) for a first course in computer science (CS1). In addition,
Parts 4 and 5 of the book overlap the latest ACM/IEEE guidelines for CS2 (data
structures) courses. In particular, the book emphasizes the three processes of theory,
abstraction, and design, while being accessible to first-year students. (See the publica-
tion, Computing Curricula 1991, ACM Order Number 201910 or IEEE Computer Society
Press Order Number 2220.)

Structures and Abstractions provides enough material for a variety of introductory
courses, ranging from a single quarter to two semesters in length. There is considerable
optional material to allow for various approaches in different teaching situations. Some
of the teaching options are discussed under the heading, Teaching from This Text,
following the preface.

The standard edition of Structures and Abstractions uses (except in one appendix) only
ISO/ANGSI Standard Pascal. All examples have been tested in several typical Pascal
environments to ensure that they run correctly. A separate edition is available for those
preferring a treatment specific to Borland International’s Turbo Pascal and Borland
Pascal, using compilation units and objects to implement abstract data types.

Borland/ Turbo Pascal 5.x/6.x/7 x

This edition of Structures and Abstractions uses Borland International Corporation’s
Borland Pascal® or Turbo Pascal®, showing the use of versions 5., 6.x, and 7.x of that
environment as well as the new Turbo Pascal for Windows® (TPW). A separate version of
the book is available for those preferring to use a Standard ISO treatment appropriate
to other Pascal compilers.

Who can read this book?

The reader needs no previous programming experience, but should be computer-
literate, with enough experience in mathematics to appreciate the need for rigorous
thought and to understand algebraic proofs. I have found that the best predictors of success
in a CSI course are skills in mathematical proofs and word problems and an ability to
communicate clearly in writing.

Specific features

Consistent emphasis on engineering and design: Structures and Abstractions places
heavy emphasis on the fundamental techniques for proper software engineering,

vi

Preface

including procedural and data abstraction, top-down modular design, increment.al
testing, theuse of assertionsand loop invariants, and elementary running-time analysis.
Modular, hierarchical design is constantly emphasized from Section 2.2 onward, even
before we begin to introduce the Pascal language. Chapters 3 and 4 introduce Pascal by
means of parameterless procedures, real-number data, and simple 1/0O, while con-
stantly emphasizing procedural design—an emphasis that continues through Chapters
5-7. The consistent early emphasis on procedural abstraction has the advantage that
hardly any monolithic programs appear in the book. Students learn good design
practices from the very beginning. Similarly with data abstraction, which begins in
Chapter 16: Once we begin to use abstract data types, we continue to use them in
Chapters 17, 18, 20, and 21.

Classicalgorithms: A first courseshould introduce ts students tomany of the classic
algorithms on which later courses will build. This book includes base conversion, case
mapping, counting characters and words in text, exponentiation, greatest common
divisor, square roots, Towers of Hanoi, expression parsing, line drawing, string
manipulations, binary search, selection sort, insertion sort, quicksort, list processing,
evaluation of postfix expressions, pseudorandom number generation, and simulation.
Additional case studies are provided in the lab manual.

Style: The book itself reflects the rules of good programming style. For example,
subjects like modularity, procedural abstraction, data abstraction, recursion, loop
invariants, and dynamic data structures are introduced by themselves in their own
sections and chapters, sothat the reader can focus full attention on them. Then each topic
is learned “bottom up,” with a sequence of stepped examples that gradually increase
in complexity and abstraction. Like the programs themselves, chapters are short and
modular, divided into short sections with clear goals. More advanced topics likely to be
skipped in shorter courses are isolated in optional sections, often toward the ends of
chapters or in later chapters. The modular design of the book results in more chapters,
sections, and subsections, but these are shorter, clearer, and more flexible in use.

Explicit problem-solving techniques: Classroom testing has proven that students
benefit from the presentation and repeated use of explicit methods for problem solving.
Chapter 2 presents eight of the most generally useful. These techniques are illustrated
with two nontrivial case studies in Chapter 2, and then are used repeatedly throughout
the following chapters. By seeing the same techniques applied in various situations,
readers gradually learn their use.

Aspiral, nota“peek-a-boo” approach: Students need to see why therules of practice
and style are necessary. The book introduces techniques when they are needed, then
uses them persistently and consistently. The reader never loses sight of a topic while
seeing it unfold, because an important topic is never dropped after being introduced.
The gradual deepening and continual exposure to abstraction deepens readers’ under-
standing and appreciation of each topic.

Pedagogical aids

Chapter outlines and summaries: Each chapter begins with a few introductory
paragraphs connecting the chapter with previous material and outlining the topics to
be covered. The chapter ends with a summary of the main points that were made.

Important terms defined: Important technical terms are shown in boldface when
they first appear. If they are likely to be unfamiliar, they are defined in the margin and
listed in the glossary. Many are also listed at the end of each chapter, where they serve
as a guide to concepts that should be reviewed for exams.

Preface

Visualization: Sequences of execution during procedure calls, iteration, recursion,
and other complex actions are “animated” by sequences of diagrams acting as “snap-
shots” of the execution process. Altogether, there are more than 35 such animations,
containing more than 195 diagrams. In addition, there are hundreds of diagrams of
syntax and data structures—over 380 in all.

Exercises and programming projects: Questions and exercises are distributed
throughout the chapters, immediately after material requiring practice and reinforce-
ment. The questionstend tobeof the simple, self-check type. Exercises range in difficulty
from trivial syntax practice to typical debugging experiences and short programming
assignments. Major programming projects are found at the ends of the chapters. I have
tried to provide a wide range of problems to meet the needs of various introductory
courses. Altogether, there are more than 650 problems, occupying over 100 pages.

Case studies: [mportant programming issuesareillustrated by application to typical
problems in computer science. These include first glimpses of many of the kinds of
problems to be encountered in later courses, and are used to teach explicit techniques
of problem solving as well as informal methods of verification and analysis. (Additional
case studies can be found in the companion lab manual.)

Debugging aids: Debugging techniques and examples are discussed frequently. In
addition to standard techniques involving modular testing and intermediate output,
typical interactive debugging tools are described. Always, the reader is reminded that
itismostimportantto preventbugsin the first place, by good engineering practices. (The
companion lab manual also provides considerable guidance with debugging, along
with instructions for using the THINK and Borland / Turbo debuggers.)

Sidebars on important issues: At the ends of many chapters, you will find sidebars
illustrating some of the issues that swirl through computer science. These extended
quotes from a variety of professional and popular sources are intended to stir discus-
sionsinclassand toencouragereaders toexamine their ownattitudes toward important
computer-related issues of our time.

Acknowledgments

Many reviewers have helped toshape this new edition. Their detailed and thoughtful
suggestions along the way are much appreciated. We thank

Jay Martin Anderson, Franklin and Marshall College
Laurie Benaloh, Clarkson University

David Berque, Colgate University

Jack V. Briner, Jr., University of North Carolina-Greensboro
David T. Brown, Ithaca College

John F. Buck, Indiana University, Bloomington
Deborah L. Byrum, Texas A&M University

Adair Dingle, Lehigh University

Ron Gilster, Walla Walla Community College
Wilbur Goltermann, University of Colorado-Denver
Ramon P. Hernandez, Mesa Community College
Kip Irvine, Miami-Dade Community College

Danny Kopec, Carleton University

Cary Laxer, Rose-Hulman Institute of Technology
Lewis Lum, The University of Portland

Rebekah D. May, Ashland Community College

vii

viii

Preface

Jack Mostow, Rutgers, The State University of New Jersey
Debbie Noonan, College of William and Mary

Jandelyn Planc, University of Maryland-College Park
Dennis E. Ray, Old Dominion University

Charles W. Reynolds, James Madison University

Ali Salehnia, South Dakota State University

Louis Steinberg, Rutgers, The State University of New Jersey
Christopher J. Van Wyk, Drew University

In addition, the influence of the first-edition reviewers is still felt, and we thank them
again: Robert B. Anderson, University of Houston; Brent Auernheimer, California State
University, Fresno; Anthony Q. Baxter, University of Kentucky; Louise M. Berard,
Wilkes College; David Alan Bozak, SUNY College at Oswego; Larry C. Christensen,
Brigham Young University; Robert A. Christiansen, University of Iowa; Denis A.
Conrady, University of North Texas; Cecilia Daly, University of Nebraska-Lincolr;
Douglas Dankel If, University of Florida; Edmund I. Deaton, San DiegoState University;
H. E. Dunsmore, Purdue University; Suzy Gallagher, University of Texas; David
Hanscom, University of Utah; Robert M. Holloway, University of Wisconsin-Madison;
Ronald P. Johnson, Evangel College; George F. Luger, University of New Mexico;
William E. McBride, Baylor University; Michael G. Main, University of Colorado at
Boulder; Andrea Martin, Louisiana State University; Jane Wallace Mayo, University of
Tennessee-Knoxville; Kenneth L. Modesitt, Western Kentucky University; David
Phillips, University of Pennsylvania; George A. Novacky, Jr., University of Pittsburgh;
David L. Parker, Salisbury State University; Theresa M. Phinney, Texas A&M Univer-
sity; V. S. Sunderam, Emory University; Stephen F. Weiss, University of North Caro-
lina—Chapel Hill; Laurie White, Armstrong State College; Stephen G. Worth I1I, North
Carolina State University—Raleigh; and Marvin Zelkowitz, University of Maryland.

Many teaching assistants and students have helped with the evolution of this book.
I would particularly like to thank my teaching assistants, Rich Thomson, Cliff Miller,
Elena Driskill, Rory Cejka, Mark Ellens, Mike Stephenson, and Lynn Eggli. Iwould also
like to thank all the students who made suggestions and corrections, especially
Alexander Kratsov, Randy Veigel, Mark Nolan, Blair Brandenberg, Ian Adams, David
Swingle, and Lisa Clarkson. Over the years, I have received many helpful suggestions
from John Halleckand LeRoy Eide of the University of Utah Computer Centerand from
my wife, Lydia Salmon. They too deserve effuse thanks.

For many yearsIhavereceived encouragementand inspiration from Dave Hanscom,
the undergraduate coordinator in the University of Utah’s Computer Science Depart-
ment. lalso owea special debt to my son, Edward Salmon, whose superbsense of design
influenced the cover and several of the diagrams and projects in this book.

Many thanks to the talented people at Richard D. Irwin, Inc., who provided more
support and help than I thought possible. I particularly thank Sheila Glaser, Max
Effenson, and Lena Buonanno, the developmental editors, who cheered me along while
trying to convince me that but is only a conjunction.

But I should also mention Jackson P. Slipshod, who makes frequent appearances in
the questions and exercises in this book. To the best of my knowledge, he made his first
appearance in a chemistry book by Joseph Nordmann, published many years ago by
John Wiley & Sons, Inc. Thanks to Dr. Nordmann's fine book, Jackson has been dogging
me ever since. ,

Teaching from This Text

Questions? Requests?

I enjoy feedback from readers, and have received some of the best suggestions in
this way. You can send comments, gripes, corrections, and compliments to the follow-
ing e-mail addresses. (But please don’t ask me to help with your homework!)

William L. Salmon
Internet address: salmon@cs.utah.edu
CompuServe address: 71565,135

TEACHING FROM THIS TEXT

This book supports a variety of college-level courses, from one quarter to two semesters
in duration. The flexibility is achieved by designing the book around a core of essential
chapters—Chapters 3-10and 13-15—while also supplying a number of more indepen-
dent chapters that cover discretionary topics required by some courses but not others.
Few instructors will want to cover the whole book, so the following explanations are
intended to help in choosing material to suit particular courses and teaching styles.

Chapter 1: Computing and Computation

The goals of the first chapter are to define and explain the concept of an algorithm,
to explain what it means to say that a computer is a general-purpose symbol-manipu-
lating machine, and to introduce the kinds of software used in translating algorithms
into programs, compiling them into machine language, and executing the resulting
machine code. Many but not all of the terms in this chapter should be familiar from
previous computer literacy experiences, but this chapter is necessary in order to
establish a common vocabulary and conceptual basis for the rest of the book. In my one-
quarter classes, time does not allow me to lecture on this material, but [assign it for
outside reading, warning students that they will be responsible for the contents of the
chapter. Of course, I answer in class any questions that arise from the readings.

Chapter 2: Abstraction, Problem Solving, and Algorithm Design

Sections 2.1 and 2.2 introduce the complexity of modern commercial software
systems and the need for abstraction to handle such complexity. In particular, Section
2.2 describes procedural abstraction, describing how actions are encapsulated in
procedures. We then apply this way of thinking while introducing (in Sections 2.3-2.12)
eight explicit techniques for inventing algorithms to solve problems. One of the
techniques is the important principle of top-down design. Sections 2.3-2.6 begin a
Fahrenheit-to-Celsius temperature conversion case study, which uses real-number
data. This evolving case study is used to provide a unifying thread in Sections. 4.1, 4.5,
4.6,4.7,51,52,6.1,6.2,and 6.7, as the topic of procedural abstraction is pursued more
deeply. Section 2.7 applies further problem-solving techniques to the problem of sort-
ing three numbers. This second casestudy isa setup for Section 6.3, where thealgorithm
is coded into Pascal. Often I do not lecture explicitly about this chapter, assigning it,
along with Chapter 1, for reading during the first week of class.

ix

Teaching from This Text

Chapter 3: Program Structures

Chapter 3 is where I usually start explicit coverage in class. This chapter uses the
abstraction concepts and problem-solving techniques of Chapter 2 while introducing
the syntax of Pascal programs. The goal is to show how procedural abstractior? is
practiced in a programming language, and to show how procedural abstraction
involves modularity and hierarchy. Pascal procedures are used, but without param-
eters. The procedures draw pictures but do not use numeric or character data. I do not
give formal lectures on syntax as I cover this material; instead, I act out the solution of
the problems in great detail. To cover Section 3 4, for example, I state the problem, then
I describe how the output might look (one of the explicit problem-solving techniques of
Chapter 2), then I describe the sequence of steps in executing an appropriate program,
then I outline the algorithm, and finally, I build the syntax of a program. The last stage
of this process will generate many questions about syntactic details, and I answer all of
these, also discussing alternatives at every stage.

Chapter 4: Real Data and I/O

Here we introduce real-number data, explaining how it is stored, why this results in
roundoff error, and how we perform real-number input and output (I/0). The goal is
to introduce a data type and explain its use without distracting from the emphasis on
procedural abstraction. (If we introduced integer, character, and boolean data at this
point, together with their associated syntax, we would sacrifice the constant emphasis
on procedural abstraction and encapsulation.) The chapter ends with the beginnings of
a modularized program for Fahrenheit-to-Celsius conversion, as a motivator for the
parameters to be introduced in Chapter 5. Again, I teach this material by acting out the
solutions of the problems. When I get to the Pascal-coding stage, I often make
“accidental” syntax or semantic errors to show what happens, how I locate the errors,
and how I fix them. (I use a microcomputer with LCD overhead projection whenever
possible, so that students can see me do these things in real time. When I have no
projector, I simulate events on the blackboard.)

Instructors who prefer to introduce text file 1/O can do so at this point. Although all
file I/O material is collected in Chapter 17, it is designed for flexible use. Sections 17.1
and 17.2 are designed so that they can be covered immediately after Sections 4.3 and 4.4,
if desired.

Chapter 5: Procedures with Parameters

Now we take the procedural syntax and top-down design principles from Chapter
3,combine them with the real-number example from Chapter4,and add new syntactical
material on using parameters with procedures. The first case study is the Fahrenheit-to-
Celsius problem carried over from Chapter 4. This modularized version is now to the
point where it needs protection from bad input data, and this brings up the need for
control structures, which will be the topic of Chapter 6. Section 5.4 introduces the
important concept of program states, explaining that the purpose of a procedure is to
map a precondition state into a postcondition state. Pre- and postconditions are written
for most procedures from this point on, allowing students to ease into this idea before
weuseitin the introduction of loop invariants in Chapter 11. Instructors whodon’t plan
to cover invariants can downplay the emphasis on pre- and postconditions. (In my
experience, students will ignore topics for which they are not held responsible!)

Teaching from This Text

Chapter 6: Controlling Execution

Section 6.1 introduces a simple form of the IF. . THEN. . ELSE control structure an.d
uses it to protect Chapter 5's Fahrenheit-to-Celsius program from bad input data. This
improvement works, but what we really need is a controlled way to repeat execution.
Section 6.2 therefore introduces a simple version of theWHI LE . . D0 control structureand
uses it to build a final version of the F-to-C program. Section 6.3 examines in Pascal the
problem of sorting three numbers, which was attacked in Section 2.7 as an example of
algorithm design. This case study is the vehicle for introducing the use of stubs and
drivers when practicing incremental testing of programs during construction. It also
provides an unusually good example of what is involved when one tries to test a
program with all possible combinations of input data, and it motivates the need for the
more formal verification methods to be introduced in Chapter 11. Chapter 6 also shows
how nested procedure calls work, because this issue arises naturally in the three-
number sorting problem. The chapter ends with an optional section on recursion
because students often ask at this point what happens if a procedure calls itself.

Chapter 7: Functions

After a short introduction of the concept of a function, Section 7.2 contrasts the data-
return mechanismof a Pascal function with that of a procedure. Section 7.3 explainshow
to decide which to use in a given case. The chapter is located here because functions are
needed in Sections 8.2, 8.5, and 8.7.

Chapter 8: Ordinal Data Types

Now we have finished introducing procedural abstraction and have practiced top-
down, hierarchical design, so we are free to wade through the syntax associated with all
the ordinal data types. Section 8.3 presents a major case study (decimal-to-binary
conversion) using integer data. The algorithm design involves careful specification of
pre- and postconditions for all procedures and functions, together with specifications
of the encapsulations in each and descriptions of the state transitions. (Pre- and
postconditions were introduced in Section 5.4; encapsulation has been emphasized
since Chapter 2.) The development of the Pascal code emphasizes incremental testing
with a stubs and a driver, a concept that was introduced in Section 6.3. We also discuss
how we know that a loop will necessarily terminate (a major topic of the optional
Chapter 11). Section 8.5 works out a case study involving characters, functions, stubs,
andanIF..THEN. . ELSE structure. It also providesa set-up for the boolean expressions
introduced in Sections 8.6 and 8.7. The case study on character-property functions
(Section 8.7) is a further example of hierarchical design and the replacement of decision
structures with boolean expressions. The chapter ends with a thorough explanation of
operator precedence, involving all simple data types.

Chapter 9: Decision Structures Again

With the presentation of procedural abstraction complete, Chapters 9 and 10 cover
decision structures (IF. . THEN. . ELSE and CASE) and repetition structures (WHILE . . DO,
FOR..DO, and REPEAT. .UNTIL) in complete detail. (Simple forms of IF. . THEN. . ELSE
and WHILE. . DO were introduced in Chapter 6. The complete treatment takes 62 pages
and would have distracted considerably from the presentation of procedural abstrac-

xi

xii

Teaching from This Text

tion if introduced then.) Section 9.1 presents a second version of the Sort3 procedure,
using the nested procedure calls from Section 6.4 and now somenew [f. . TH E N.. EITS E
syntax. Boolean expressions are used toreplace IF. . THEN. . ELSE structures in Section
9.1, as they were in Section 8.7. Nested decisions are introduced in Section 9.2 because
they are needed in the menu case study of Section 9.3. This case study in turn leads into
a discussion of Pascal’s CASE structure in Section 9.4, and this in turn leads to a need for
guard loops, as introduced in Chapter 10.

Chapter 10: Repetition by Iteration

When WHILE loops are re-examined in Section 10.1, we can discuss their use of
boolean expressions, which was not possible in Section 6.2. We then consider how to
count characters in input, using a sentinel to control the loop. This case study involves
the concept of the Input file and file buffer (Section 4.4) and uses a stub and driver in
the testing of the code. Section 104 discusses counter-driven pretest loops, as a
motivation for the FORstructure introduced in Section 10.5. Theimportance of top-down
design comes up again. The FOR loop example in Section 10.6 involves ordinal values
and character data. Section 10.7 presents a case study involving a Monte Carlo
calculation, and is optional. The casestudy is our firstexample of using a pseudorandom
number generator, a topic that comes up in several later programming projects and in
Chapter 21. The REPEAT . . UNTIL structures of Section 10.8 are applied to the problem
of processing menu selections, completing some work that began in Section 9.3. Like
Chapter 9, this one will be covered completely in most courses.

Instructors who wish to use text file I/O at this point can cover Sections 17.3-17.6
following Section 10.3. Chapter 17 has been designed to allow this option.

Chapter 11: Iteration by Design (Optional)

Thisisan optional chapter thatintroduces the rudiments of formal loopdesign, using
loopinvariants and termination conditions. A variety of casestudies s provided to meet
the needs of different instructors. One-quarter or one-semester courses will probably
not have time to cover more than Section 11.1 and one of the other case studies.

Section 11.5 is distinct from the rest of the chapter. It shows how the running times
of nested loops can beexpressed as functions of loop parameters,andisintended as early
preparation for those intending to cover big-oh notation in Section 19.3.

Don’t try to cover too much in this chapter, and allow sufficient time for the material
you do cover. The chapter applies mathematics in ways that will be new to many
students, and the material will take time to assimilate. Instructors preferring to skip this
chapter can do so without losing continuity.

Chapter 12: Repetition by Recursion (Optional)

Recursion takes a long time to sink in, so it is introduced in Chapter 12 and revisited
frequently, with heavy use of animation diagrams like those used earlier for nested
procedure calls. Iteration and recursion are treated as equally important techniques for
repetition,and often, bothrecursiveand iterative versionsof an algorithmareexamined.

Some instructors prefer to postpone this topic, but others (including me) prefer to
present recursion and iteration side by side for direct comparison. In presenting
recursion, l emphasize repeatedly that there is nothing new here: A procedure is calling
a procedure, as in previous chapters, but now the procedure being called happens to

Teaching from This Text

have the same name and to contain the same code as the caller. Working carefully
through the execution snapshots (the “animations”) of Section 12.1 and one of the case
studies goes along way toward dispelling the mystery that many students attach to this
subject. As with the previous chapter, this one provides more material than any one
instructor is likely to use, in order to allow flexibility and choice. In my one-quarter
course, l usually skip Sections 12.4 and 12.6, but I make sure to mention that every loop
canberewrittenrecursively, and vice versa; and thatsome problems are more easily and
clearly coded iteratively, while others are more easily and clearly coded recursively. I
also always discuss comparative running times, as in Table 12.3.1 and Section 12.7.

Chapter 13: Programmer-Defined Types

Sections 13.1 and 13.2 must be covered before the next chapter, because subrange
typesare used forarray indexes in Chapter 14. The material on enumerated types could
be postponed, but why bother? Chapter 13 doesn’t require much time in class, so I cover
it by working out a couple of case studies.

Chapter 14: Arrays

This is a large chapter with several options. After one-dimensional arrays (Sections
14.1-14.3), many instructors like to discuss sorting, so Section 14.4 examines the
selection sortalgorithm. If the instructor wantsto delve deeper into this subject, Chapter
19 can be covered next, providing complete discussions of sequential search, binary
search, big-oh notation, insertion sort, and quicksort. Otherwise, the course can goon
directly tothe other topics in Chapter 14:stringarrays, parallel arrays, multidimensional
arrays. In my course, I usually cover most of Chapter 14 through examples worked out
in class, leaving the complete treatment of searching and sorting for the next course.

Chapter 15: Records

The core issues in this chapter are presented in Sections 15.1-15.4, so shorter courses
may want to skip Sections 15.5 and 15.6. If the goal is to cover some data abstraction at
the end of the first quarter or semester, don’t spend too much time on Chapter 15, but
regard it as a preparation for the Fraction ADT in Section 16.2.

Chapter 16: Data Abstraction (Optional)

At this point, we enter the part of the book consisting of topics sometimes reserved
for a second course or a second semester. Chapter 16 explains the central issues in the
design and construction of abstract data types, and Sections 16.1 and 16.2 are prerequi-
sitetomaterialinSections 18.4(Set ADT), Chapter20(List ADTandBinarySearchTree
ADT), and Chapter 21 (Stack and Queue ADTs).

Chapter 16emphasizes thedistinction betweenan ADT’s interface and its implemen-
tation. AlthoughStandard Pascal does not provide the toolstobuild a proper ADT, most
commercial compilers do. Some general comments about this appear in Section 16.2,
with detailed instructions for using units in Turbo and THINK Pascal provided in
Appendix H. Instructors preferring to skip ADTs can skip Chapters 15,20, and 21, and
cover only the early sections of Chapter 18 and whatever portions of Chapter 17 and 19
they desire.

xiii

xiv

Teaching from This Text

Chapter 17: Files (Optional)

There is considerable disagreement among instructors over when to introduce text
file 1/O. Some instructors want students to use text files as early as Chapter 4, while
others save it until late in the C51 course or even postpone it until the second course. In
order to meet all needs, | have chosen to collect all file I/ O material in Chapter 17, but
to organize it in a three-level presentation. Sections 17.1 and 17.2 can be covered
immediately after Sections 4.3 and 4.4, respectively, and Sections 17.3-17.6 can be
covered right after Section 10.3, if desired.

Chapter 18: Sets (Optional)

Only the longer CS1 courses are likely to cover this chapter in depth, but enough
material is provided here for two-semester courses. Note that Section 18.4 requires that
Chapter 16 has been covered previously.

Chapter 19: Algorithms for Searching and Sorting (Optional)

This chapter is unusually complete, and provides enough material for both CS1 and
(52 courses; the instructor should choose from what is offered. The treatment of bi g-oh
notation in Section 19.3 provides both a heuristic and a formal discussion to suit courses
at different levels.

Chapter 20: Pointers and Dynamic Data Structures (Optional)

Much of this chapter will be saved for asecond course, but Sections 20.1-20.3 are often
covered in CS51, and some of Section 20.6. A complete coverage is provided to allow
choiceand to provide material for longer courses. Except for the first section, most of this
chapter draws on the ADT concept introduced in Chapter 16.

Chapter 21: Object-Oriented Programming for Stacks and Queues
(Optional)

This is traditionally CS2 material, but is provided here for use in longer courses.
Again, it uses the ADT concept introduced in Chapter 16, but goes on to discuss
inheritance and virtual methods, while showing how stack and queue objects can be
derived from a generic sequence type.

Teaching Aids

Computer science is learned with hands on the machine, not while reading a book.
Therefore a lab manual is available as a companion to this text. It provides detailed,
hands-on instructions for using MS-DOS and Apple Macintosh operating systems and
bothBorland / Turboand THINK Pascal systems. There are step-by-step guided lessons
in debugging, and a number of guided case studies in problem solving and program
design, including
* Dealing with roundoff error.

® Program animation.

Teaching from This Text

» Experiments with integer, character, and boolean data and with parameters and
control structures.

» Calendar programs.

e Testing loop invariants.

* Estimating the readability of text.

¢ Animating recursion.

* Making change.

* Cellular automata.

¢ Drawing Sierpinski curves (fractals).

* Simulating a Turing machine.

* Simulating a psychiatrist.

* Animating sorting.

* Building linked lists.

An instructor’s manual is also available to interested teachers, containing

* Tips on teaching the course.

* Sample course outlines.

* Solutions to exercises and projects.

* Sample exam questions.

A bank of test questions is also available separately. The latter two items can be
obtained by writing to the publisher on a school letterhead.

Sequencing of material

Thediagramsonthe next two pages show how Structuresand Abstractions canbe used
In courses as short as one quarter or as long as two semesters.

xvi

Teaching from This Text

Short Course

Assigned for reading:
Chapters 1 and 2

v

Chapters 3-10,
possibly skipping
Sections 5.5, 5.6, 6.5, 10.7

Y

Chapter 12,
possibly skipping
Sections 12.4 or 12.5 and
skipping Section 12.6

Y

Chapter 13 and

most of Chapter 14

v

[Sections 151-1535, 157 |
L Chapter 17 j

One Quarter or Semester

Assigned for reading:
Chapters 1 and 2

Y

Chapters 3-10,
possibly skipping
Sections 5.5, 5.6, 6.5, 10.7

Y

rSections 11.1,11.2, 11.57

\

Chapter 12,
possibly skipping
Sections 12.4 or 12.5 and
skipping Section 12.6

\

L Chapters 13 and 14 j

'

| Sections 151-155, 15.7]

L Chapter 16 j

r Chapter 17 —l

