Edward Yourdon

TECHNIQUES
OF
PROGRAM
STRUCTURE
AND

DESIGN

Techniques of

Program Structure
and Design

EDWARD YOURDON

President
YOURDON inc.

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey

Library of Congress Cataloging in Publication Data
YOURDON, EDWARD.
Techniques of program structure and deugn.

Includes bibliographies.

1. Electronic dlgxulcomputers—l’rommmng.
1. Title.

QA76.6.Y68 001.642 75-9728
ISBN 0-13-901702-X

© 1975 by Prentice-Hall, Inc.
Englewood Cliffs, New Jersey

. All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

10 9 8 7 6 5 4

Printed in the United Statw of America

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA, PrY. LTD., Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto

PRENTICE-HALL OF INDIA PRIVATE mezn New Delhi

PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST Am (Pt1e.) L1D., Singapore '

’{t -,

PREFACE

“We build systems like the Wright brothers built airplanm—build the whole
thing, push it off a cliff, let it crash, and start over again.”
* Professor R. M Graham
Software Engineering, page 17

“Of course 99 percent of computers work tolerably well, that is obvious.
There are thousands of respectable Fortran-oriented installations using many
different machines and lots of good data processing apphcatlons runmng
qulte steadnly, we all know that! The matter that concerns us is the sensmve

edge, which is socially desperately significant.”
. Professor J. N. Buxton
Software Engineering, page 119

“I think it is inevitable that people program, and will continue to program,
poorly. Training will not substantially improve matters. Using subsets of
languages doesn’t help because people always step outside the subset. We

have to learn to live with it.”
Professor A. L Perhs

Softwate Engineering Technigues, page 33

“There is a widening gap between ambitions and achievements in software
engineering. This gap appears in several dimensions: between promises to
users and performance by software, between what seems to be ultlmately

Preface opening quotes from Software Engineering, P. Naur and B Rgndell (eds),
NATO Scientific Affairs Division, Brussels 39, Belgmm January 1969."and Software
Engineering Techniques, J. N. Buxton and B. Randell (eds.), NATO Scientific Aﬂ‘au's

DIVISIon, Brussels 39, Belgium, Apnl 1970

xii Preface

possible and what is achievable now and between estimates of software
costs and expenditures, This gap is arising at a time when the consequences
o_f software failures in all its aspects are becoming increasingly serious. Par-
ticularly alarming is the seemingly unavoidable fallibility of large software, -
since a malfunction in an advanced hardware-software system can be a
matter of life and death, not only for individuals, but also for vehicles carrying
hundreds of people, and ultimately for nations as well.” .

Dr. E. E. David and Mr. A, G. Fraser

Software Engineering, page 120
In 1970 I made the terrible mistake of writing a set of notes for a
seminar entitttd ADVANCED PROGRAMMING TECHNIQUES. I say -
“mistake” because I quickly discovered that I knew almost nothing about
that advanced state of witchcraft that we call programming, despite the fact
that I had been gainfully employed in the field for several years. Neverthe-
less, I persisted: from 80 pages of almost incoherent scribblings in 1970,
the notes went through ten major revisions and slowly grew to 900 type-
written pages. At several points in this process, common sense dictated that
I throw all ten versions of the manuscript away and cease inflicting my ideas -
upon my students; unfortunately, pride and sheer orneriness have prevailed.
Pity the poér students who suffered through this period: Nearly 3000 pro-
grammers in 12 countries have forgiven my bugs and overlooked some of
my more absurd ideas; more important, they have all patiently communi-
cated to me what they know about pro_gtamming—a privilege that must bc
experienced to be appreciated. ,)

"It has been especially interesting to me during this period to watch the
transformation through which the computer field has been struggling. The
emergence of such prophets as Edsger Dijkstra, Niklaus Wirth, and Gerald
Weinberg encourages one to think that perhaps programmers will eventually
be taught to write good programs from the very beginning. o

If this turns out to be the case, some of the suggestions and ‘warnings .-

in this book may turn out to be unnecessary. Both in my seminars and in
this book, 1 have made the basic assumption that the student has been
exposed to some of the rudiments of programming, but that he has not been.
exposed to any significant ideas on “good” programming. I think thisisa
very reasonable assumption when one is dealing with the vast majority of
programmers working in industry. As long as basic training courses continue . .
to stress the mechanics of a particular programming language (asis usually
the case with most FORTRAN and COBOL courses) this will continue to -
be true. It is particularly encouraging to see the recent trend in university
courses toward teaching students the elements of good programming. :
In any case, that isswhat this book attempts to discuss: “good” pro-
gramming. However, my experience has been that it is very difficult to tell
someone how to design a good program if he (or she) violently disagrees
with me as to what a-good program is. Hence, the first chapter in the book
is & discussion of the characferistics of a good program. I must admit that '

Preface xiii

this chapter is aimed at the experienced programmer; a college freshman‘
would probably not have any preconceived ideas about the relative merits -
of maintainability, flexibility, and efficiency in a program.

The next logical question is: How do we go about designing such a
good program ? Chapter 2 provides answers in the form of top-down design.
There seems to be some controversy concerning the order in which some of
. these ideas are presented. Many people argue that the concept of structured

programming should be presented first, after which th_é programmer is more
likely-to comprehend and accept the principle of top-down design. Perhaps
this is so; indeed, when I am confronted with a group of particularly impa-
tient programmers in a seminar, I find it helpful to present the more tangible
concepts of structured programming first, before moving on to the more
abstract concept of top-down design. Nevertheless, from a logical point of
view, it makes much more sense to talk about the design of a program
before one talks about a coding discipline. o

Chapter .3 contains a discussion of modular programming. It repre-
sents a nice transition from the abstract discussion of top-down design to
the more detailed discussion of structured programming. Nearly everyoné
seems to consider modular programming the precursor -to the currently
fashionable structured programming. I find it ironic that when I began these
notes in 1970, modular programming was considered somewhat radical by
many programmers; in today’s world of structured programming, modular
programming is considered passé. Oddly enough, it is just this area of
modularity that will probably see the greatest advances in the next few
years. Larry Constantine’s paper on “Structured Design” in the May 1974
. IBM Systems Journal will probably be as responsible for generating new
- interest in modular design as Terry Baker’s article in the January 1972 IBM
Systems Journal was in the field of structured programming. s

. In any case, structured programming certainly deserves ample discus- .
sion in any modern textbook on programming; Chapter 4 discusses this topic
at length. One section of the chapter deserves special mention: Section 4.3.3
discusses the conversion of unstructured programs into structured programs.
A number of people have objected to the emphasis I have placed on this
. area, but I submit that the usefulness of this material is a direct function of
the students’ programming experience. A new programmer, with no previous
exposure to GO-TO-ridden “rat’s nest” programs, probably requires nione
of the material in Section 4.3.3—indeed, it may actually be harmfull An
experienced programmer, on the other hand, is in desperate need of these
conversion techniques, because they help him convert his unstryctured
thinking into_ structured thinking. It is somewhat najve to_ argue that the
programmers currently being trained in universities ‘will learn’ structured
prograinming from the beginning; that is iéugh!y comparable to the argu-
ment that, since FORTRAN lacks the control structures required to con-
veniently implement structured programs, people should instantly cease

xiv Preface

programming in FORTRAN. Things don’t work that way in the real world.
For better or for worse, people are going to continue programming in
FORTRAN for the next several years until we can begin to shift them
towards more civilized languages. In the meantime, it is eminently practical
to teach people how to accomplish some reasonable approximation of struc-
_tured programming in FORTRAN. By the same token, we currently have
several hundred thousand experienced programmers in the world, each of
whom probably has another twenty years of “rat’s nest” programming before
he drops from exhaustion. If we wait for the newly trained university students
to rectify the situation with the magic of structured programming, most of
our current computer systems will collapse.

After all this preaching about structured programming, I must admit
that I temporarily ran out of energy. Chapters 5 and 6—a discussion of -
programming style and defensive programming—probably do not get the
attention they deserve. I offer the following ‘excuse: If the philosophies in
Chapters 14 are followed faithfully, there is a reasonable chance that the
programmer will already have accomplished what is suggested in Chaptcrs
5 and 6. Perhaps a more substantial excuse is that a thorough treatment of
programmmgﬁyle would require a book in itself. I highly recommend both
The Elements of FORTRAN Style (Schneiderman and Kreitzberg; Harcourt,
Brace, Jovanovich, 1971) and The Elements of Programming Style (Kcrmghan
and Plauger, McGraw-Hill, 1974) in this area.

~ For various reasons, I felt that a discussion of testing and debuggmg
should accompany a discussion of top-down design, modular programming,
and structured programming; hence Chapters 7 and 8. I still insist on making
a distinction between testing and debugging, despite the feeling of many of
my students that I am belaboring the issue. I must admit to a sense of
frustration at the end of the chapter on testing: I have the feelmg that the
majority of programmers don’t really know how to test a program properly.
Most computer scientists probably agree that a great deal more work needs
to be done before we have achieved the same level of discipline in testing that
we have in structured programming. Maybe we need “structured testing?”

If structured testing, why not structured debugging? The major objec-
tive of Chapter 8 has been to present some debugging strategies that are
quite distinct from the usual approach of dumps and traces. I have always
felt that these strategies represented the art of debugging, and that if some
students found it difficult to apply the strategies, it was because they lacked
the inborn artistic talents required of a good debugger. Perhaps this is an
oversimplified view; some friends of mine at Shell Oil in Melbourne tell me
that their programmers are being given courses in general problem-solving
in an attempt to improye their debugging skills. Perhaps this is the beginning

of structured debuggmg

Preface : XV

At the end of the book I have included four major programming exer-
cises that may be used to illustrate many of the principles of program design.
The problems in Appendix A and Appendix B were intended to be designed
by a team of programmers; a group of three or four seems to be the optimal
size. Appendix C and Appendix D are small enough to be attacked by an
individual programmer.

Acknowledgments

In addition to the thousands of students who read through the manuscript
of this book and suggested improvements and corrections, I would like to
give special thanks to Brian Kernighan of Bell Labs and Peter Neely of the
University of Kansas for their thorough review. My colleagues Bill Plauger,
Trish Sarson, and Bob Abbott also deserve thanks for using the material
in several training courses and giving me recommendations for improvements
in the manuscript. During the production of the book, Lynne Sadkowski
retained her composure while continually trying to track me down in some
far-distant part of the world to review critical galleys, while Wendy Eakin
provided invaluable assistance by copyediting and proofreading my manu-
script to the point where it resembled proper English.

In the final analysis, though, I owe this book to Sam, who, more than
all the others, believed in me.

CONTENTS

PREFACE

THE CHARACTERISTICS.
OF A “GOOD” COMPUTER. PROGRAM

1.0 Introduction, 2
1.1 What Are the Qualities of a Good Programmer?, 3
1.2 What Are the Qualities of a Good Program?, 6
1.3 Some Concluding Remarks About the “Goodness”
of Computer Programs, 2§ ‘
Problems, 29

TOP-DOWN PROGRAM DESIGN

2.0 Introduction, 36

2.1 Top-Down Design, 38

2.2 Top-Down Coding, 54

2.3 Top-Down Testing, 59

2.4 Alternatives, Variations, and Problems with
Top-Down Design, 77

vii

xi

viii

Contents

2.5 Case Studies and Examples: The IBM
“Chief Programmer Team” Project, 83
References, 88
Problems, 88

MODULAR PROGRAMMING ' - 93

3.0 Introduction, 93
3.1 Definitions of Modularity, 94
3.2 The Advantages and Disadvantages of Modularity, 97
3.3 Techniques for Achieving Modular Programs, 99
3.4 General-Purpose Subroutines, 125
References, 131
Problems, /32

STRUCTURED PROGRAMMING 136

4.0 Introduction, 136
4.1 History and Background of Structured Programming, /37
4.2 The Objectives and Motivation of Structured
Programming, 140
4.3 Theory and Techniques of Structured Progrhmmmg, 144)
4.4 Other Aspects of Structured Programming, 74 :
4.5 Considerations of Practicality in Structured
Programming, 175
References, 180
Problems, 183

PROGRAMMING STYLE: :
SIMPLICITY AND CLARITY : 185
5.0 Introduction, 190
5.1 Review of Suggestions for Developmg Simple
Programs, 197 :
5.2 Additional Programming Techmques for Readable N
Programs Problems, 207 .
References, 216
Problems, 216

—

APPENDICES:

_Contents

ANTIBUGGING

6.0 Introduction, 220

6.1 The Arguments Against Antibugging, 221

6.2 Aspects of a Computer Program that Require
Checking, 224

6.3 Antibugging Programming Techniques, 228 -
Problems, 239

' PROGRAM TESTING CONCEPTS

7. 0 Introduction, 244
7.1 Definitions and Concepts, 244

7.2 The Scope. of the Testing Problem, 247

7.3 Levels of Testing Complexity, 249

7.4 Types of Errors to be Exposed by Testing, 254
~ 7.5 Stages of Testing, 256

7.6 Designing Programs for Easier Testmg, 263
7.7 Automated Testing Techniques, 266 .
7.8 Other Testing Techniques, 272
References, 274 - .
- Problems, 275

.DEBUGGING CONCEPTS AND TECHNIQUES

8.0 Introduction, 279 -) ’
8.1 Debugging Philosophies and Techniques, 280
8.2 Common Programming Errors and Bugs, 292

- 8.3 Classical Debugging Techniques, 294
. 8.4 The DDT Debugging Packages, 298

8.5 Implementation of a Simple Version of DDT, 308
References, 321
Problems; 322

4 Introductlon, 326
A The Money Problem, 329
B The Mugwump Fertilizer Problem, 335

' € The Master-File Update Problem, 346

D The Tic-Tac-Toe Problem, 350

INDEX

220

279

' CLASS PROBLEMS AND EXERCISES 326

361

THE
CHARACTERISTICS

OF A “GOOD”
COMPUTER PROGRAM

In fact, the céntra} concept in all software is that of a program, and a gener-
ally satisfactory definition of a program is still needed. The most frequently
used definition—that a program is a sequence of instructions—forces one to
ignore the role of data in the program. A better definition is that-a program is
a set of transformations and other relationships over sets of data and container
structures. At least this definition guides the designer to break up a’program
design problem into the problems of establishing the various data and con-
tainer structures required, and defining the operators over them. The defini-
tion requires that attention be given to the properties of the data regardless
of the containers (records, words, sectors, etc.) o o
KeNNETH K. KOLENCE
Software Engineering, page 50

There is no theory which enables us to calculate limits on the size, perfor-
mance ot complexity of software. There is, in many instances, no way evén to
specify in a logically tight way what the software product is supposed to do, or

how it is supposed to do it.
EpwaArD E. DAvD

Software Engineering, page 69

‘One of the problems that is central to the software production process is to
identify the nature of progress and to find some way of measuring it. Only one

Chapter opening quotes from Software Eng:‘neeriré, P. Naur and B. Randell (eds.),
NATO Scientific Affairs Division, Brussels 39, Belgium, January 1969 and Sofrware
Engineering Techniques, J. N. Buxton and B. Randell (eds.), NATO Scientific Affairs

Division, Brussels 39, Belgium, April 1970.

1

2 The Characteristics of a “Good"* Computer Program / Chap. 1

thipg seems to be clear just now. It is that program construction is not always
a simple progression in which each act of assembly represents a distinct for-
ward step and that the final product can be described simply as a sum of many
sub-assembilies. :

A. G. FrRASER
Software Engineering, page 86

lfrogramming management will continue to deserve its current poor reputa-

tion for cost and schedule effectiveness until such time as a more complete
understanding of the program design process is achieved.

: KEeNNETH K. KOLENCE

Software Engineering, page 123

Any large program will exist during its lifetime in a multitude of different
versions, so that in composing a large program we are not so mugh concerned
with a single program, but with a whole family of related programs, contain-
ing alternative programs for the same job and/or similar programs for similar
jobs. A program therefore should be conceived and understood as a member
of a family; it should be so structured out of components that varioys mem-
bers of this family, sharing components, do not only share the cbrrectness
demonstrated of the shared components but also of the shared substructure.

E. W. DUKSTRA
Software Engineering Techniques, page 31

1.0 Introduction

Throughout this book, we assume that you are already familiar with the
basic elements of computer hardware, operating systems, and programming
languages; you are now ready to direct your attention to the finer points of
computer programming. Which area of programming would you like to
explore first? Shall it be list structures ? Dynamic memory allocation ? Deci-
sion tables? Or perhaps searching and sorting algorithms? '

If you chose any of these areas, you may be suffering from a weakness
common to almost all programmers: a fatal fascination with techniques of
programming. You may be assured that we will eventually discuss a number
of important programming techniques, but only after we agree on some
philosophies of programming. :

Philosophical discussions of this type are generally unpopular with
programming students; they seem too vague and general, and the program-
mers would prefer to spend their time discussing more “practical,” “useful”
subjects. On the other hand, it should be remembered that programmers are,
in many cases, a somewhat stubborn, unrealistic, and uncompromising breed:
They often seem to think that their primary function is to invent clever new
algorithms, rather than to perform useful work.

Without meaning to be unnecessarily cruel, I feel that I must remind
you of an important fact: As a programmer, you will always be working for

b

Sec. 1.1 / What Are the Quslities of @ Good Programmer ? 3

an employer. Unless you are very rich and very eccentric, you will not enjoy
the luxury of having a computer in your own home; unless you plan to remain
a perpetual student, you cannot expect to spend your life dazzling your awe-
stricken professors with your programming virtuosity. In short, you cannot
be an artist, separate and aloof;; it is highly unlikely that the programming
community will ever generate a Michelangelo or Rembrandt. As a program-
mer, you will be expected to do whatever is necessary to make the computer
provide some useful service. This is true whether you are a business pro-
grammer, a scientific programmer, or involved in research activities for a
computer manufacturer. -

I thus feel that it is eminently practical to discuss some philosophies of
programming. What things should you do to make yourself useful as a pro-
grammer ? What aspects of your programs will be of most concern to your
employer ? These topics may seem rather trifling to you, but they can ensure
your success as a programmer. To ignore the philosophies presented in this
chapter will certainly cost you dearly in terms of promotions and salary
increases, and it may even cost you your job. What could be more practical ?

The basic purpose of this chapter is to present a checklist of good pro-
gram design. We will begin by making some general comments on the qualities
of a good programmer, as well as the qualities of a good program; this will
be followed by a more, specific list of seven characteristics of a good program.
After writing a computer program, you should ask yourself if your program
satisfies these “rules” of good programming; before writing a pgogram, you
should ask yourself how you can best satisfy these rules. ' ‘

1.1 What Are the Qualities of a Good Programmer?

During the past several years, I have had the opportunity to teach advanced
programming courses to thousands of students in several different countries
around the world. The students, in general, have been experieficed program-
mers in banks, insurance companies, government agencies, manufacturing
organizations, scientific installations, universities, and every . other con-
ceivable background. More for my own amusement than anything else, 1
have often begun each course with the question, “What are the qualities of a
good programmer ?” The answers have been as varied as the students’ back-
grounds, and some of them are worth repeating: B

1. A good programmer writes good programs (or efficient programs, or well-
documented programs, etc.). : ;

2. A good programmer works well with other people. . - : ,

3. A good programmer communicates well with the users of his program.

4. A good programmer takes a bath at least once a week.

5. A good programmer shows up for work on time.

6. ‘A good programmer never shows up for work on time.

4 The Characteristics of a “Good™ Computer Program / Chap. 1

7. A good programmer.doesn’t cause trouble.
8. A good programmer works well under pressure.
9. A good programmer likes classical music.

An argument often breaks out about the first answer to the question,
i.e., the statement that a good programmer is anyone ‘'who writes good
programs It is pointed out that managers are usually required to evaluate the
“goodness” of a programmer, yet they seem to be singularly incapable of
determining the quality of a good program. We will see during this chapter
that none of us is really in a good position to quantitatively determine the
quality of a program, so a manager should not be blamed too much in this -
difficult situation.

‘ Nevertheless, it seems that some programmers have a reputation in
- their organization for being “superprogrammers” The word will spread that .
Tom can turn out-a large complex program in a single day, or that Alice
always manages to debug her programs with a maximum of one test shot.
Given this natural situation, I have occasionally amcnded my original ques-‘

tion and asked my programming classes:

Is a superprogrammer—i.e., someone who can code faster than a
_speeding bullet, leap ‘over reams and reams of prmtout in a smgle
bound, and generally out-program everyone else in the organiza-
tion—looked upon with favor and respect by the management? '

Though there is often a tremendous amount of heated debate and con-
" troversy on this point, it has been surprising how many pcople-especrally
programmmg supervisors and managers—have emphatically said “No!” A
programmer in a large bank in Montreal put it rather well: “If my programs
are outrageously inefficient, so inefficient that even my manager can tell, then
I’m in trouble. Slmxlarly, if I take ten times longer to write a program than
other people in my department, I will be in trouble, For the most part, though, :
my manager is more interested in my ablhty to function as a human being in
a human organization; my relationship with the computer is my own busi-
ness. My manager wants me to work reasonably regular hours, interface well
with other programmers and computer. users, and most of all, not to cause
trouble The same management attitude seems to be quite prévalent ih large
insurance companies, government _agencies, and banks, less prevalent in
medium-sized manufacturing organizations; and generally not true'in univer-
sities, research organizations, and computer manufacturing companies.

To the extent that this management attitude is true, the subject of
advanced programming, and indeed this entire book, may be rather academic.
What is the point of writing the most efficient program in the world if you lack
other traits that make you an accepted, if not popular, member of your
organization ? Fortunately, the situation is generally not quite that extreme.
Management would like to see programs with all of the “good” qualmcs that

Sec. 1.1 / What Are the Qualities of & Good P:ogrémmer.{ . 5

we will be discussing later in this chapter; still, it is important to remember
that they are often not willing to tolerate the popular image of the “computer
bum” for the sake of obtaining highly efficient programs.

Note that there are different reasons for disliking the so-called “super-
programmer.” Some superprogrammers can develop working programs very
quickly, or can write extremely efficient programs—but they are undocu-.
mented, impossible to understand, maintain, or modify. On the other hand,
there are some superprogrammers who turn out truly superlative code—and
yet they are unsociable or, in the words of one mé.nager,"‘a ‘bit like Allen
Ginsberg.” .

" The most mterestmg point about dlscussmg the merits of good and bad
programmers is that we seem unable to measure their merits in any reasonable
quantitative fashion. That is, -the superprogrammer seems to write much
better programs than his mortal colleagues—but how much better?. We. are
at a loss in this area, for we have no way of knowing whether he is twice as
good, 3.14 times as good, or ten times as good as the other. programmers. -

This fact was dramatically illustrated by a study made by Messrs. H. .
~ Sackman, W. J. Erickson, and E. E. Grant.! During a study to compare the

advantages of an on-line (i.e., time-sharing) programmmg approach -versus.
the standard batch progtammmg approach,? a group of twelve experienced
programmers were given two different programming problems to solve: One
was an algebraic problem, and the other was a program that could ﬁnd its
way out of a “rat’s maze.” Careful records were kept to detcrmme how long
it took to code and debug the program. Debugging time was considered to
have begun when the programmer had removed all of the “serious™ complla-
tion errors, and the debugging was considered to be ﬁmshed when the pro-
gram could successfully process some standard test input.

The results of the cxpenmcnt dre shown in Table 1.1. Note the startlmg _
ratio between the best and worst perfarmances in the areas of coding and '
debugging. The ratios on all other areas of measurement; while not quite as -
dramatic, are still large enough to cause problems for a manager attempting -
“to plan and schedule a programming prOJect As the authors pointed out in

theu' conclusions:

" When a programmer is good,
" He is very,.very good,
But when he.is bad,
" He is horrid. '

- 1“Exploratory Expenmental Studws Cmnpms Online and Offline Prosrammms i
Performanee, H. Sackman, W.J. Erickson, and E. E. Grant, CommwdoatiomoftheACM
January 1968, pages.3~-11.)

. 2As a point of interest, the researchers did ﬁnd that ume-shanns -enabled a pro-
grammer to finish his work more qmckly, though more compuﬁer time was consumed in the
development process.

6 The Characteristics of a “Good”” Computer Program / Chap. 1

Table 1.1. RANGE oF INDIVIDUAL DIFFERENCES

IN PROGRAMMING EXPERIMENT
Performance Measure Worst Best Ratio
1. Debugging hours—-algebra program 170 6 - 28:1
2. Debugging hours-—maze problem 26 1 26:1
3. CPU sec. for program development—algebra problem 3075 370 8:1
4. CPU sec. for program development—maze problem 541 30 11:1
5. Coding hours—algebra program 111 7 16:1
‘6. Coding hours—maze problem ' 50 "2 25:1
7. Program size—algebra problem 6137 1060 -~ 631
8. Program size—maze problem 3287 650 5:1
9. Run time (CPU sec.)—algebra problem 79 1,6 5:1..
10. Run time (CPU sec.)—maze problem . 8.0 106 131

They also pointed out that
The observed pattern was one of substantial correlation with . . . test scores
with programmer trainee class grades, but of no detectable correlation with
experienced programmers’ performance. : :
Their final conclusion was that
~ This situation sugg&cts that general programming skill may dominate early
training and initial on-the-job experience, but that such skill is progressively
transformed and displaced by more specialized skills with increasing experi-
ence. ’ ‘ .
What conclusions may one draw from all of this? Not much—except
that we know very little about what makes programmers tick, what makes
them good, or how to measure just how talented they really are. The sceming
tautology that “a good programmer is one who writes good programs” ig
not necessarily true, according to those who hand out the raises and promo-
tions. In addition to knowing OS and JCL on the IBM System/360, it seems
that a good programmer must have a number of qualities that have nothing
to do with a computer. S o

™

1.2 What Are the Qualities of a Good Program?

As I mentioned before, I often begin a course on advanced programming by
asking the students for their definition of a good programmer. Not too sur-
prisingly, I often follow this up with the question, “What are the qualities of a
good computer program?” Once again, there is a variety of definitions; some
of the more interesting ones are:

1. Tt works.
:2, Tt works according to specifications.
3. It is flexible,

