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Preface

Data structures was identified as a distinct subject in ACM’s Curriculum 68, which
is generally recognized as the first comprehensive formulation of topics to be included
in a university program in computing and information sciences. But the scope of the
subject was not clearly defined there. As evidenced by the flow of papers, survey arti-
cles and books since Curriculum 68, all having some variant of the term “data struc-
tures” in their title, there has been a steady evolution in the concept. At first data
structures was almost synonymous with graph theory—particularly the theory of lists
and trees which lends itself naturally to the description of hierarchical data. Then
the concept was extended to include networks, the algebraic theory of sets, relations,
lattices, and so on, becoming what is now regarded as discrete structures. Following the
publications of the Codasyl Task Force it was realized that the mathematical concepts
had to be further enlarged by a treatment of storage structures, for the fact that data
must be represented in computer storage introduces major considerations not present
at the mathematical level. The ACM Conference on “Data: Abstraction, Definition
and Structure” served to further delineate the subject. In that conference there were
several contributions on data types, a concept which appeared in the first versions of
Algol, but which until then had not received major attention. :

To some the subject of data structures is still the theory of discrete algebraic struc-
tuces—studied by considering sets of data and the operations on them, by setting up
classifications of data types based on the operations, and by devising methods of
defining types in computer languages and using the types in applications. We have
chosen to regard the storage structure as being an integral part of the data structure,
and in Chap. 2, which provides a framework for the rest of the book, the storage struc-
ture is explicitly included in the formal definition. Also, throughout the later chapters
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X Preface

repeated emphasis is given to methods and problems arising out of the storage repre-

" sentation; for example, the representation of arrays in Chap. 5, and thg problems of
allocating and deallocating storage in Chap. 8. Because computer storage is so impor-
tant to data structures, a course on the hardware aspects of computers would be a
useful prerequisite to the data structures course for which this book is intended as the
text, but such a course is not essential. Because discrete structures are essential, Chap.
1 consists of a brief survey of the ideas necessary for an understanding of the book.
In many computer science programs a course on discrete structures will be taken as a
prerequisite, or simultaneously, with a course on data structures.

Therc is a natural place for the data structure course in a computing and informa-
tion sciences program. This place is just affer the introductory courses in computing,
generally devoted to explaining the concept of an algorithm, developing programming
style, and introducing the student to one or more programming languages, but just
before the detailed courses on compiler theory, operating systems, and file systems,
which mark a specialist program. Thus a data structures course, and hence this book,
is directed at all who propose to specialize in computer science, information science,
or system science, and to those in related fields such as applied mathematics or indus-
trial engineering who wish to go af least a little way beyond the elementary courses
on computer programming. It is true that only the specialist is likely to have to produce
working programs on some of the now highly developed teciiniques such as sorting
and garbage collection discussed in the book. But these processes are so common and
so important that an understanding of their principles is part of the basic knowledge
which anyone seriously engaged in programming should carry with him. The detail
‘has been suppressed to a basic level. ’ ' '

The concepts of data type and data structures are introduced in Chap. 2, where the
framework for later chapters is set up; the common types, strings, lists, arrays, trees,
sets and graphs are studied in detail in Chaps. 3 through 7. Beyond these fundamentals
the book is intended to bring out certain ideas which we regard as particularly impor-
tant. These can be summarized as follows:

e There is an intimate association between data type definition.and programming
‘language design. Many programming languages have their main justification in
their efficient, even brilliant exploitation of some particular data types, and it is
pedagogically sound and interesting to use such languages in the presentation of
data structures, and to build examples and problems around them. For this rea-
son no single language has been adopted for algorithms. A simple Algol-like
language, with sufficient notation to select fields and work with pointer variables,
has been adopted. There has been no exposition of programming style, although
an effort has been made to express the algorithms in a form acceptable today. It

is expected that in many cases the student will rework the algorithms in actual
languages such as APL, SNOBOL, PASCAL or PL/I to show how the data struc-
tures in the languages lend themselves to implementations of the procedures. To
help in this, occasionally an algorithm is expressed in one of these languages.
# Most of the recently developed programming languages allow the user to intro-
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duce new data types appropriate to the application being considered. This natu-
rally leads to problems in choosing and designing data structures. Although this
process is part of problem solving, and no handbook approach is available,
systematic methods of building up and choosing data types and structures are
emerging. An illustration of these methods is given in Chap. 7, in order to bring
together, in one situation, many of the criteria which have to be applied when
comparing and choosing data structures—criteria which appe: - throughout
Chaps. 2 to 7. In addition, a detailed example of data structure design is given
in the Appendix.

e The most challenging aspects of describing and representing data are met in
attempting to deal with large files and with the file collections of data base
systems, File structures and data base management systems are subjects in their
own right, and there are whole books on them. But the principles and concepts
required to understand them are precisely those required to understand simpler
structures. They are more complex because the data volumes are larger, the
storage mappings involve multilevel stores, and the basic types are combined
into composite ones. But the underlying structural aspects are the logical exten-
sions of those encountered in studying the more elementary types, and it isimpor-
tant to brihg this out in any serious treatment. Thus Chaps. 9 and 10 are intended
to provide the connection between data structures and the more system-oriented
subjects of file structures and data base management (generally studied later in
the computer science curriculum) and to lay the foundation for the later courses
on those subjects.

o Although many aspects of data structures are firmly based in mathematics
(especially algebra, graph theory and combinatorics), there are other aspects
(centered on programming languages), which are less formal. Thus the subject
is still in a state of intensive development. Some of these current developments
are introduced in Chap. 2; others are treated in the last chapters. Also, to suggest

~ how future developments might influence data structures, we have included
accounts of such topics as associative memories, and data manipulation lan-
guages. Although the content of these latter chapters is, inevitably, more subject
to change than that of the earlier ones, in our opinion there has been sufficient
acceptance of the approaches to justify their inclusion in an undergraduate text.

At the University of Toronto, the data structures course of which this book is the
outgrowth, is taken by computer science majors in their third year. At this point they
will have had an introductory course on algorithms and structured programming, a
course on programming languages (where three or four languages including PL/C,
Algol W and SNOBOL are taught), and a course on computer architecture. They will
have had experience in working with several types of structures, but no systematic
overview of them. The data structures course is necessary prerequisite for most of the
advanced courses offered in the senior year. Because the course is taken mostly by
students who have not yet had a discrete structure course, and because it is a one-
semester subject, it has been customary to teach mainly the material to the middle of
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Chap. 7, deferring the later chapters to courses on File Structures and Data Base Sys-
tems. The whole book can be covered in a two-semester course. The bibliographic
material and reference citations in the footnotes provide the basis to explore any topic
for which greater depth is considered desirable.

It is hardly necessary to state that solving problems and doing exercises are essential
parts of any course; examples and exercises are given at the end of each chapter.
Mathematical formulation and solution of problems are important. But even more
important is a thorough understanding of the concepts, so that the student will appre-
ciate for each data type. those features which make it especially suitable for particular
applications and problems. It is especially desirable that students should know how to
use quantitative methods in system design and evaluation. Many of the end-of-chapter
exercises are intended to test understanding, and to encourage familiarity with quan-
titative comparisons with regard to data structure choices.
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chapter 1

Mathematical Preliminaries

While a more precise definition of data structures will be given in Chapter 2, it is
sufficient for now to regard them as sets of data that can be stored in electronic com-
puters, and on which operations can be carried out. The distinction between data
structures and mathematical structures is not sharp, but basically mathematics is
concerned with the abstract properties of structures and relations on them rather than
how such structures are represented in some device. In this chapter mathematical
concepts and notation relevant to the study of data structures gre presented.

1.1 Sets and Mathematical Logic

The notion of set as a collection of members or elements will be taken as primitive.
The following notation is used to denote sets and express simple facts about them. We
write

xXeX for x is an element, or member, of the set X
x ¢ X  for xis not an element of the set X.

When the order in which elements are listed is important, this is indicated explicitly.
{x,, x5, ..., x,} denotes the unordered set of elements x,,...,x, and {x,,..., x>
denotes the ordered set.

The index of an element in an ordered set is the integer that specifies the element’s
position. The first element may be given either the index 0 or 1. Both the notations
x, and x[p] will be used to specify the pth element of an ordered set.

The cardinality of a set, | S|, is the number of elements in it. Two important sets are
the null set containing no elements, denoted by &, and the power set of a given set A4,

1



5 Mathematical Preliminaries ) , Ch. 1

denoted by P(A4). P(A) is the set of all subsets of 4. If | 4| = n, | P(4)| = 2*, since
P(A) is congtructed by either choosing or deleting each of the elements in A4.

Given two sets 4 and B, we write 4 2 B or B = A if every member of Bis in 4,
and say that 4 includes B or that B is a subset of A. Bis a proper subset of A (A > B)
if there are members in A that are not members of the subset B.

A=B if A and B have the same elements

AU B s the set consisting of elements either in 4 or B
ANB is the set whose elements-are both in 4 and B
A — B s the set of elements of A that are not in B

A is the set of those elements not in 4 but which are in some universal
set, X © A, implied to exist.

These definitions may also be considered as definitions of the operators U (union),
N (intersection), — (difference), and ~ (complement) for which the operands are sets.

For arbitrary sets 4, B, and C, the operators U and N obey certain laws that can
be proved directly from the definitions. They are:

Commutative: A\ UB=BUA and ANB=BN A

Associative:  AUBUC)=AUBUC and ANBNC)=UAUANBNC
Distributive: )

ANBUC)=ANBUMANC) and AUBNC)=[AUBNAUC).
Each of the two operators »u' and N distributes over the other.

Example 1.1

Operations .on sets can be illustrated by plane figures, called Venn diagrams, in
which points are regarded as set elements. Figure 1.1(a) illustrates the distributive
law . » .

AUBNC)=MAUBNAUC)

for the case where 4 N BN C # . Similarly, Figure 1.1(b) illustrates the theorem
. ‘AUB=ANB,

which can be proved from the definitions for the operators. In this book, all the sets
will be countably (or denumerably) infinite; that is, their elements can be placed in
corfespondence with the integers. Since the number of points in the plane is non-
denumerable, the Venn diagrams illustrate that set and set operations are meaningful
for sets with an infinite number of elements, even when the number is nondenumer-
able. '

The Cartesicn product of two sets 4 X B is the set of ordéred pairs of elements in
which the first is 2 member of 4 and the second a member of B:

{(a,b)|a € 4,b € B}
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Sec. 1.2 "‘}
X=X~y »
X '~
l’, R xxxxxx 3
X \ X s
LA ! X A E
\ / %x
X X
' C x
XxxxxX XyxyxX
~ //
AUB xxxx A==
AUC --- , - B[l
BNC = N
&S i.
{a) AUBNC)=(AUBIN(AUC) (bB)AUB=ANB

Fig. 1.1 Venn-diagram illustrations of set theorems

In addition to sets, other primitive concepts are taken from mathematical logic.
X = {x|p(x)} is the set of elements x such that predicate (or statement) p is true. Boolean
variables take on the values true or false (also denoted by 1 and 0), and Boolean opera-
tions over variables, A (and), \/ (or), and — (negation) are defined by truth tables as
shown in Table 1.1. .

+

TABLE 1.1 Truth tables for Boolean operators

B true  false B true  false A - A
A A
true true false true true true true Jalse'
false  false  false false true  false Jalse Irue
ANB AV B . A :

There is a complete correspondence between sets and Boolean variables, and
between set operations and Boolean operations. For example, corresponding to the
distributive law for sets, there is the distributive law for Boolean variables:

ANBVC)=MAANBVMAANC)
and

AVBAC)=AVBAMAVO).
1.2 _‘Relations

A binary relation p on the pair of sets X and Y is a subset of the Cartesian product
X x Y.If (x € X,y € Y)is a member of the subset, we write x p y. In particular,
a binary relation on the set X is a subset of X X X (also written as X2), and is des-
ignated ¢X, p). ’ -
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If M is the set of months, {January, February, . .., December}, and S the set of
seasons; {Spring, Summer, Fall, Winter], Table 1.2 illustrates the relation “M is a
\ month in S.” Members of }M X 'S belonging to the relations are shown as true; others

are [alse.
TABLE 1.2 Relation of months and seasons
M Spring Summer Fall Winter

January false false false true

¢n February false false false true
March true false false _ true

April true false false Salse

* May true false false false

June true true . false. Salse

July Salse true false false

August false true false Jalse

September Sfalse true " true false

October false Jalse true false

November Jalse false true Jalse

December false false true " true

For finite sets X and Y with n and m elements, respectively, the relation (X, Y, p)
can be represented by an n X m matrix of rows and columns corresponding to the
elements of X and Y, and in which an entry is 1 iff two elements are related and 0'
otherwise. This is the matrix associated with the relation. 1t is a Boolean matrix whose
elements correspond to the values true or false. For (X, p), the matrix is square. Table
1.3 illustrates the matrix associated with the relation ({1, 2, 3, 4,} <).

Note that a binary relation (X, p) which determines a subset R = X2 also defines
a complement R = X2 — R and a corresponding complementary relation (X, p).
The complementary relation for ({1, 2, 3, 4, 5}, <) is ({1, 2, 3, 4} <), and its members
are given by the zero entries in Table 1.3.

TABLE 1.3 Matrix associated with a relation

1 2 3 4
1 0 1 1 1
2 0 0 1 1
3 0 0 0 1
4 0 0 0 0

The binary relation is not the most general type of relation that might be considered
between set elements. We might, for example, consider a ternary relation on three
sets as a subset of the Cartesian product X x Y X Z. However, binary relations have
enough complexity to be applicable to a wide variety of problems, and further, it is
often useful to regard a ternary relation as a set of binary relations. We can look on
the three-dimensional matrix associated with therelationon X X Y x Zasasetof X, Y
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planes for each z € Z; in effect, there is a binary relation on X X Y for every z. (Simi-
larly, of course, we can view the ternary relation asa set of binary relationson ¥ X Z
foreachx € X,oron X X Zfory € Y.

The relation (X, p) is said to be:

Reflexive: ifxpxforallx e X

Irreflexive: ifxpxfornox e X

Symmetric: ifxpy=yp x for all x,ye X N
Antisymmetric: ifxpy ANypx=>x=yforallx,y e X
Transitive: fxpyANypz=>xpzforalxy ze X.

Relations with different combinations of reflexive/irreflexive, symmetric/antisym-
metric, and transitive/nontransitive are interesting both in life and mathemtics. For
example, the sibling relationship is irreflexive and symmetric; the relation “x is a
substructure of y” is irreflexive, antisymmetric, and transitive. The equivalence rela-
tion, and the partial order, considered next, are especially important bécause they
are often encountered.

A relation that is reflexive, symmetric, and transitive is said to be an equivalence
relation, denoted by E. A partition, I1, of a set X, is a family of subsets X, ... L
X, € X such that

1. X, # @, all i (the subsets are not empty).
2. i#j=>X,N X, = & (the subsets are disjoint).
3. U X, = X (the subsets, collectively, make up X).

Given a partition, II, of X, a binary relation, E(II) is defined on X by makingx,E(IT)x,
mean that x; and x, are related iff they are in the same subset. It-is evident that E®)
is symmetric, transitive, and reflextive, and hence an equivalence relation. It is not~ -
difficult to show the converse also: that is, that the existence of an equivalence relation
on a set implies a partmon A subset, C(a), of the partition qonsxsts of all members
such that xE(Il)a:

C@ ={xe X|xE(IDa} < X.

A commonly cited example of an equivalence relation defined on the mtegﬁN
is the set of residue classes for a given (integer) modulus k. This is the set of integers
remaining after dividing N by k, and it is written N mod k. Each integer n can be
written in the form i X k + m, where i is an integer and 0 << m < k. The effect is a
partition of the integers into the residue classes {C0), c(1),...,Clk — 1)}. For
example, if 7 is the modulus, the possible remainders after dwxdmg any integer by 7
are 0, 1,2, 3,4, 5, 6, and these represent the residue classes C(0), ..., C(6). Integers
belonging to ‘C(1) are of the form 7 X i + 1. »

A partial order relation (X, <) has the followmg propemes

1. x < x (reflexive).
L x<yANyZ<x=>x=y (antisymmetric).
3. x<y A y<z= x< z(transitive).
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" Sets for which there is a partial order relation between members are called posets. From
the relation <C we can define other rels*:uns,! which may be represented by >, <,
and >-. For example,

x<y=y=x

X< y=>x<y A x#£y.
The relation > is also a partial order, but > (and also <) is irreflexive and hence not’
a partial order.

Note that x 7> 3 does not imply that x <y since the < relation is not defined as
the complement of :>. Suppose, for example, that > is the inclusion relation on a
set; this is a partial ordering, and X >> Y is interpreted to mean that Y is a proper
subset of X. Given two arbitrary sets, we cannot say that one is necessarily a subset
of the other.

If fo'r”z‘ihy two elements x > y \/ x < y, we have a linear or simple order. In such
a_case the members of the poset can be displayed as points on a line, and the set is
called a chain. '

Any finite poset can be represented by a Hasse diagram in which:

1. Each distinct element is represented by a point.
2. The relation x <y is represented by a line that rises steadily from x to y.

If x is below y in a Hasse diagram, it does ffot follow that x < y unless there is a
line between them.

Example 1.2

Figure 1.2 shows the Hasse diagram for the poset whose elements are the areas
representing subsets in the accompanying Venn diagram. The relation is set inclusion.
Let (X, ") be a relation and X 2 Y > . Then an element x € X is an upper
bound of Yiff forall y € Y, y < x. The least element of all the upper bounds of ¥

AUBUC

. -ANC

‘AUBG

o CU A

ANnBoY BNCo STNA

Fig. 1.2 Hasse diagram

There are several common ways of expressing these relations verbally : for example, x has rank
less than or equal to p for x << y, x precedes y for x - », and x is a successor of y for x > .



