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5.1. Introduction

In this chapter, and the following one, we examine various applications of
C*-algebras and their states to statistical mechanics. Principally we analyze
the structural properties of the equilibrium states of quantum systems con-
sisting of a large number of particles. In Chapter 1 we argued that this leads
to the study of states of infinite-particle systems as an initial approximation.
There are two approaches to this study which are to a large extent comple-
mentary.

The first approach begins with the specific description of finite systems and
their equilibrium states provided by quantum statistical mechanics. One
then rephrases this description in an algebraic language which identifies the
equilibrium states as states over a quasi-local C*-algebra generated by sub-
algebras corresponding to the observables of spatial subsystems. Finally, one
attempts to calculate an approximation of these states by taking their limit
as the volume of the system tends to infinity, the so-called thermodynamic
limit. The infinite-volume equilibrium states obtained in this manner provide
the data for the calculation of bulk properties of the matter under considera-
tion as functions of the thermodynamic variables. By this we mean properties
such as the particle density, or specific heat, as functions of the temperature
and chemical potential, etc. In fact, the infinite-volume data provides a much
more detailed, even microscopic, description of the equilibrium phenomena
although one is only generally interested in the bulk properties and their
fluctuations. Examination of the thermodynamic limit also provides a test
of the scope of the usual statistical mechanical formalism. If this formalism
is rich enough to describe phase transitions, then at certain critical values of
the thermodynamic parameters there should be a multiplicity of infinite-
volume limit states arising from slight variations of the external interactions
or boundary conditions. These states would correspond to various phases
and mixtures of these phases. In such a situation it should be possible to
arrange the limits such that phase separation takes place and then the equi-
librium states would also provide information concerning interface phenom-
ena such as surface tension.

The second approach to algebraic statistical mechanics avoids discussion
of the thermodynamic limit and attempts to characterize and classify the
equilibrium states of the infinite system as states over an appropriate C*-
algebra. The elements of the C*-algebra represent kinematic observables,
ie., observables at a given time, and the states describe the instantaneous
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4 States in Quantum Statistical Mechanics

states of the system. For a complete physical description it is necessary to
specify the dynamical law governing the change with time of the observables,
or the states, and the equilibrium states are determined by their properties
with respect to this dynamics. The general nature of the dynamical law can
be inferred from the usual quantum-mechanical formalism and it appears
that there are various possibilities. Recall that for finite quantum systems
the dynamics is given by a one-parameter group of *-automorphisms of the
algebra of observables,

A T,(A) = eitHAe—ilH’

where H is the selfadjoint Hamiltonian operator of the system. Thus it
appears natural that the dynamics of the infinite system should be determined
by a continuous one-parameter group of *-automorphisms t of the C*-
algebra of observables. This type of dynamics is certainly the simplest
possible and it occurs in various specific models, e.g., the noninteracting
Fermi gas, some of which we examine in the sequel. Nevertheless, it is not the
general situation. The difficulty is that a group of this kind automatically
defines a continuous development of every state of the system. But this is not
to be expected for general infinite systems in which complicated phenomena
involving the local accumulation of an infinite number of particles and energy
can occur for certain initial states. Thus it is necessary to examine weaker
forms of evolution. For example, one could assume the dynamics to be
specified as a group of automorphisms of the von Neumann algebras cor-
responding to a subclass of states over the C*-algebra. Alternatively one
could adopt an infinitesimal description and assume that the evolution is
determined by a derivation which generates an automorphism group only
in certain representations. Each of these possible structures could in principle
be verified in a particular model by a thermodynamic limiting process and
each such structure provides a framework for characterizing equilibrium
phenomena. To understand the type of characterization which is possible
it is useful to refer to the finite-volume description of equilibrium.

There are various possible descriptions of equilibrium states, which all
stem from the early work of Boltzmann and Gibbs on classical statistical
mechanics, and which differ only in their initial specification. The three most
common possibilities are the microcanonical ensemble, the canonical en-
semble, and the grand canonical ensemble. In the first, the energy and particle
number are held fixed; in the second, states of various energy are allowed for
fixed particle number; and in the third, both the energy and the particle
number vary. Each of these descriptions can be rephrased algebraically but
the grand canonical description is in several ways more convenient. Let $
be the Hilbert space of states for all possible energies and particle numbers of
the finite system, and H and N, the selfadjoint Hamiltonian and number
operators, respectively. The Gibbs grand canonical equilibrium state is
defined as a state over £(9), or L#%(H), by

Tr 5(e B ﬁKA)

A Ty
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where K = H — uN, B, p € R, and it is assumed that e #X is a trace-class
operator. Typically H is lower semi-bounded and the trace-class property is
valid for all § > 0. The parameters £ and u correspond to the inverse tem-
perature of the system, in suitable units, and the chemical potential, re-
spectively, and therefore this description is well-suited to a given type of
material at a fixed temperature. Now if the generalized evolution t is defined
by

A€ L(DH)— 1(A) = % de” K e L(9),
then the trace-class property of e~ #X allows one to deduce that the functions
t g (AT(B))

are analytic in the open strip0 < Im ¢ < fand continuous on the boundaries
of the strip. Moreover, the cyclicity of the trace gives

wﬂ‘u(ATt(B)) lr=ip = wy, (BA).

This is the KMS condition which we briefly described in Chapter 1 and which
will play an important role throughout this chapter. One significance of this
condition is that it uniquely determines the Gibbs state over Z%(D), i.e., the
only state over £%($) which satisfies the KMS condition with respect to
at the value § is the Gibbs grand canonical equilibrium state. This can be
proved by explicit calculation but it will in fact follow from the character-
ization of extremal KMS states occurring in Section 5.3. It also follows
under quite general conditions that the KMS condition is stable under
limits. Thus for a system whose kinematic observables form a C*-algebra
A and whose dynamics is supposed to be given by a continuous group of
*-automorphisms  of 9, it is natural to take the KMS condition as an em-
pirical definition of an equilibrium state.

Prior to the analysis of KMS states we introduce the specific quasi-local
C*-algebras which provide the quantum-mechanical description of systems
of point particles and examine various properties of their states and repre-
sentations. In particular we discuss the equilibrium states of systems of non-
interacting particles. This analysis illustrates the thermodynamic limiting
process, utilizes the KMS condition as a calculational device, and also pro-
vides a testing ground for the general formalism which we subsequently
develop.

In the latter half of the chapter we discuss attempts to derive the KMS
condition from first principles.



5.2. Continuous Quantum Systems. I

5.2.1. The CAR and CCR Relations

There are two approaches to the algebraic structure associated with systems
of point particles in quantum mechanics. The first is quite concrete and
physical. One begins with the Hilbert space of vector states of the particles
and subsequently introduces algebras of operators corresponding to certain
particle observables. The second approach is more abstract and consists of
postulating certain structural features of a C*-algebra of observables and then
proving uniqueness of the algebra. One recovers the first point of view by
passing to a particular representation. We discuss the first concrete approach
in this subsection and then in Section 5.2.2 we examine the abstract formula-
tion.

The quantum-mechanical states of n identical point particles in the con-
figuration space R are given by vectors of the Hilbert space L%(R™). If the
number of particles is not fixed, the states are described by vectors of the
direct sum space

& =@ LAR™),
nz0
ie, sequences Y = {Y™}, . o, where Y@ e C, y™ e LA(R™) for n > 1, and the
norm of y is given by

Wi = [YOR 4+ ¥ fdxl Ay Y, - )[R
n>1

There is, however, a further restriction imposed by quantum statistics.
. If y € § is normalized, then

dp(xl’ sees xn) = ,!//(")(xl, ey xu)lzdxl e dxn

is the quantum-mechanical probability density for ¥ to describe n particles
at the infinitesimal neighborhood of the points x,, ..., x,. The normalization
of y corresponds to the normalization of the total probability to unity. But in
microscopic physics identical particles are indistinguishable and this is
reflected by the symmetry of the probability density under interchange of
the particle coordinates. This interchange defines a unitary representation of
the permutation group and the symmetry is assured if the y transform under
a suitable subrepresentation. There are two cases of paramount importance.

6



Continuous Quantum Systems. I 7

The first arises when the components ™ of each y are symmetric under
interchange of coordinates. Particles whose states transform in this manner
are called bosons and are said to satisfy Bose (—Einstein) statistics. The second
case corresponds to anti-symmetry of the Y under interchange of each pair
of coordinates. The associated particles are called fermions and are said to
satisfy Fermi (—Dirac) statistics. Thus to discuss these two types of particle
one must examine the Hilbert subspaces &., of &, formed by the ¢y =
{¥™},. o whose components are symmetric (the + sign) or anti-symmetric
(the — sign). These subspaces are usually called Fock spaces but we will also
use the term for more general direct sum spaces.

To describe particles which have internal structure, e.g., an intrinsic
angular momentum, or spin, it is necessary to generalize the above construc-
tion of Fock space.

Assume that the states of each particle form a complex Hilbert space b
andleth” =h® h ® - - - ® b denote the n-fold tensor product of hwith itself.
Further introduce the Fock space §(b) by

B =D,
nz0
where h° = C. Thus a vector Y € §(b) is a sequence {¥™},,, of vectors
Y™ e b" and b can be identified as the closed subspace of §(h) formed by the
vectors with all components except the nth equal to zero.

In order to introduce the subspaces relevant to the description of bosons

and fermions we first define operators P. on §(b) by

Pi(i®L® ®f)=0)"'"1f, ®f0,® B fr
P-(/i®f,® ®f)=0)"Leafs, ®fe,®@ - ®fs,

n

for all fy, ..., f,€b. The sum is over all permutations #; (1, 2, ..., n)—
(ny, m,, ..., m,) of the indices and ¢, is one if 7 is even and minus one if 7 is
odd. Extension by linearity yields two densely defined operators with
[P+]l = 1 and the P, extend by continuity to bounded operators of norm
one. The P, and P_, restricted to b”, are the projections onto the subspaces
of b” corresponding to the one-dimensional unitary representations 7 1
and n — ¢, of the permutation group of n elements, respectively. The Bose-
Fock space % .(b) and the Fermi-Fock space & _(b) are then defined by

§+(b) = P, §(b)

and the corresponding n-particle subspaces h% by b = P,h". We also
define a number operator N on §(b) by

D(N) = {l//; ¥ ={"%s0, X IY"|2 < +00}

n20
and

N\I’ = {"W"’}nzo
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for each € D(N). It is evident that N is selfadjoint since it is already given
in its spectral representation. Note that ¢ leaves the subspaces & ,(b)
invariant. We will also use N to denote the selfadjoint restrictions of the
number operator to these subspaces.

The peculiar structure of Fock space allows the amplification of operators
on b to the whole spaces &, () by a method commonly referred to as second
quantization. This is of particular interest for selfadjoint operators and uni-
taries.

If H is a selfadjoint operator on b, one can define H, on §% by setting
H, = 0 and

HP.(fi ® - ®f)) = Pi(glfl ®6H® - ®H,® - ®f,.)

for all f; € D(H), and then extending by continuity. The direct sum of the H,
is essentially selfadjoint because (1) it is symmetric and hence closable, (2) it
has a dense set of analytic vectors formed by finite sums of (anti-) sym-
metrized products of analytic vectors of H. The selfadjoint closure of this
sum is called the second quantization of H and is denoted by dT"(H). Thus
dT(H) = @ H,.
n>0

The simplest example of this second quantization is given by choosing H = 1,
one then has

dlr'(1) = N.
If U is unitary, U, is defined by U, = 1 and by setting
UP:(/®/® - ®f)=P. (UK ®U/H® - ® Uf)

and extending by continuity. The second quantization of U is denoted by
I'(U), where

r) =g u,.

n20

Note that I'(U) is unitary. The notation dI" and I is chosen because if U, =
e is a strongly continuous one-parameter unitary group, then

1"( Ut) — eirdr‘(H).

Next we wish to describe two C*-algebras of observables associated with
bosons and fermions, respectively. Both algebras are defined with the aid of
particle “annihilation” and “creation” operators which are introduced as
follows. For each fe h we define operators a( f), and a*( f), on {(h) by initially

setting a(f W = 0, a*(f W@ = f, fe b, and

af i@, - ®f)=n" L f)LR [, ® - ® Jus
I ®L® - Bf)=(n+ D'Qf, ® --- ® fy.
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Extension by linearity again yields two densely defined operators and if
Y™ e b", one easily calculates that

la(f Wl < n 201, la* O™ < (e + DY2LTHI@)L

Thus a( f) and a*(f) have well-defined extensions to the domain D(N'/?) of
N2 and

la* (Wl < IFIIEN + D2y

for all y € D(N'/?), where a*( f) denotes either a( f) or a*( f). Moreover, one
has the adjoint relation

@* (e, ¥) = (¢, a(f W)

for all ¢, Y € D(N'/?). Finally, we define annihilation and creation operators
a+(f) and a%(f) on the Fock spaces & .(bh) by

as(f)=Pia(f)P+, a%(f)=Pia*(f)P:.

The relations

@i(Ne ) = (@, a:(S W), Nat(S Wi < IFININ + D)2y

follow from the corresponding relations for a(f) and a*(f). Moreover,

ax(f) = a(f)P+,  ai(f) = P.a*(f)

because a(f) leaves the subspaces & ,.(h) invariant. Note that the maps
S a.(f) are anti-linear but the maps f+s a*% (f) are linear.

The physical interpretation of these operators is the following. Let
Q=(1,0,0,...), then Q corresponds to the zero-particle state, the vacuum.
The vectors

V()= at(NQ

identify with elements of the one-particle space b and hence a¥ (f) “creates”
a particle in the state f. The vectors

Yi(fi, - f) = )7 12ak(fy) - a2 (£)Q
=P:(f/i® - ®f)
are n-particle states which arise from successive “creation” of particles in
the states f,, f,_ 1, ..., f;. Similarly the a,(f) reduce the number of particles,

ie., they annihilate particles. Note that if f; = f; for some pair i, j with 1 <
i < j<n,then

V-Ufoo s ) =P_(/i® - ®f)=0

by anti-symmetry. Thus it is impossible to create two fermions in the same
state. This is the celebrated Pauli principle which is reflected by:the operator
equation

at(flat(f) = 0.
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This last relation is the simplest case of the commutation relations which
link the annihilation and creation operators.
One computes straightforwardly that

[a+(f), a.(@)] = 0 = [a%(/), a%(g)],
[a+(f) at(@] = (/, 9,

and
{a_(f), a_(@)} = 0 = {a*(f), a%(g)},
{a_(f), ax(9)} = (S, 91,

where we have again used the notation {4, B} = AB + BA. The first rela-
tions are called the canonical commutation relations (CCRs) and the second
the canonical anti-commutation relations (CARs).

Although there is a superficial similarity between these two sets of algebraic
rules, the properties of the respective operators are radically different. In
applications to physics these differences are thought to be at the root of the
fundamentally disparate behaviors of Bose and Fermi systems at low tem-
peratures. In order to emphasize these differences we separate the subsequent
discussion of the CARs and CCRs but before the general analysis we give
an example of the creation and annihilation operators for point particles.

EXAMPLE 5.2.1. If b = LXR"), then &.(h) consists of sequences {Y™},,, of
functions of n variables x; € R* which are totally symmetric (+ sign) or totally anti-
symmetric (— sign). The action of the annihilation and creation operators is given by

@) s %) = + D [ T U, x4, 35,

(ag:(f)lp)(")(xl’ Tt X,,) = "_1/2 i (i ])i_ lf(xi)l/’("_ l)(xlv R ] 2i’ Tt xn),
i=1

where £; denotes that the ith variable is to be omitted. Note that as the maps

fealf), frai(f)

are anti-linear and linear, respectively, one may introduce operator-valued distribu-
tions, i.e,, fields, a.(x) and a%(x), such that

ah) = [ix TRart,  a1() = [ax fatco)
and then the action of these fields is given by

(a:t(x)ll’)(”)(xla LR ] xn) = (" + 1)1/2!//("+1)(x’ xla e X,,),

@MW es, - x) = 072 T DI — X D, R %)

i=1

In terms of these fields the number operator N is formally given by

N= fdx a%(x)ay (x).
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5.2.1.1. The CAR Relations. We next analyze the properties of the creation
and annihilation operators obeying the CAR relations on the Fock space
& _(b). We simplify notation by dropping the suffix minus on the operators.

Proposition 5.2.2. Let ) be a complex Hilbert space, §_(b) the Fermi
Fock space, and a( f) and a*(g) the corresponding annihilation and creation
operators on §_(b). It follows that

1) la(OI = ILF 1 = la*(Oll
Sfor all fe b, and hence a(f') and a*(g) have bounded extensions.
2) IfQ=(1,0,0,...)and {f,} is an orthonormal basis of b, then
Y(farr - 5 Jad) = @*(foy) - @*(f,)Q

is an orthonormal basis of §_(b) when {f,,, ..., f,} runs over the
finite subsets of { f,}.
(3) The set of bounded operators
{a(f), a*(@); f.ge b}

is irreducible on F _(b).

PROOE. (1) One has

@(Na(fN?* = a*(Ha(f), a*(NH}a(f)
= If12a*(Na(f)

and hence

la(HI* = l@*(Na(HN*I
= I£1*la*(NaOll = 1 £ 12 laCI12.

As a(f) # 0O for f # 0 one concludes that
la( =111l = la*(NHI.

(2) This follows easily from the observation that
YW(fay o S = MDVPP_(f,, ® - ®f,).
(3) Let T be a bounded operator in the commutant of {a(f), a*(g); f,g € b}, then

(W(ﬁzp e ’j;z,,)’ Tl/’(gﬂp e gﬁm))
=(T*Q a(f,,) - al £, )a*(gp,) - - - a*(g5,))
= (T*Q QW (L - -1 S0, ¥(Gpy5 - -+ 5,0

To establish the last equality one considers the three cases n > m, n < mandn = m,
separately. In the first case both expressions are zero because the a(f) annihilate more
particles than the a*(g) create. In the second case both expressions are again zero by
complex conjugation. In the third case a( f) -+ a*(gp, )R is a multiple of Q and the

desired equality follows once more. Thus T = (Q, TQ)t and irreducibility is a con-
sequence of Proposition 2.3.8.



12 States in Quantum Statistical Mechanics

5.2.1.2. The CCR Relations. The main qualitative difference between fer-
mions and bosons is the absence of a Pauli principle for the latter particles.
There is no bound on the number of particles which can occupy a given state.
This is quantitatively refiected by the unboundedness of the Bose annihilation
and creation operators. If, for example, " is the n-fold tensor product of
S € b with itself, then the annihilation operator satisfies

laCO¥ ™l = n' 2™ £

(we omit the suffix plus on the operators). This unboundedness leads to a
large number of technical difficulties which are absent for fermions. These
problems can be partially avoided by consideration of bounded functions of
the operators a( f) and a*(g).

It is convenient to introduce a family of operators {®( f), f€ b} by

_a(f) +a*(f)
(D(f)——————ﬁ :

Note that if IT(f) = ®(if), then
e - a(f)\;{: o)

Thus
_O(f) + il f) w ) —TI(Sf)
=,  a(f) =,

V2 V2
and the a(f) and a*(f) can be recuperated from the ®( ). Thus for functional
purposes it suffices to examine the latter operators. Their basic properties
are most easily examined on the subspace F(h) = §.(h) formed by the

finite-particle vectors, i.e., the ¢ = {3, , which have only a finite number
of nonvanishing components.

a(f)

Proposition 5.2.3. Let b be a complex Hilbert space, & , () the Bose Fock
space, and a( f ) and a*(g) annihilation and creation operators satisfying the
canonical commutation relations. Define ® by

_a(f) + a*(f)
(D(f)_ \/E

for all fe . It follows that

(1) For eachfeb, ®(f) is essentially selfadjoint on F(b) and if £ =1
— 0, then [(D(£,) — O(f W — O for all Y € D(N*/?).

(2 IfQ=(1,0,0,...) then the linear span of the set {®(f,) - - - O(f)Q;
fieb,n=0,1,...} isdense in & (h).

(3) For each yy € D(N) and f, g € hone has

(@(f)P(g) — VPNV = i Im(f, gWY.



