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Preface

This book was written as a text, although many may consider it a mono-
graph.

As a text it has been used several times in both the one-year graduate
quantum-mechanics course and (in its shortened version) in a senior quantum
mechanics course that I taught at the University of Texas at Austin. It is
self-contained and does not require any prior knowledge of quantum
mechanics. It also introduces the mathematical language of quantum
mechanics, starting with the definitions, and attempts to teach this language
by using it. Therefore, it can, in principle, be read without prior knowledge
of the theory of linear operators and linear spaces, though some familiarity
with linear algebra would be helpful. Prerequisites are knowledge of calculus
and of vector algebra and analysis. Also used in a few places are some
elementary facts of Fourier analysis and differential equations. Most physical
examples are taken from the fields of atomic and molecular physics, as it is
these fields that are best known to students at the stage when they learn
quantum mechanics.

This book may be considered a monograph because the presentation here
is different from the usual treatment in many standard textbooks on quantum
mechanics. It is not that a “different kind” of quantum mechanics is pre-
sented here; this is conventional quantum mechanics (“ Copenhagen inter-

*pretation”’). However, in'contrast to what one finds in the standard books,
quantum mechanics is more than the overemphasized wave-particle dualism
presented in the familiar mathematics of differential equations. ““ This latter
dualism is only part of a more general pluralism”’ (Wigner) because, besides
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viii Preface

momentum and position, there is a plurality of other observables not
commuting with position and momentum. As there is no principle that
brings into prominence the position and momentum operators, a general
formalism of quantum mechanics, in which every observable receives the
emphasis it deserves for the particular problem being considered, is not only
preferable but often much more practical. The lesson that I believe can be
learned from the situation in particle theory is that more is needed than just
the solutions of differential equations and there exist algebraic relations
other than just the canonical commutation relation. In afomic and molecular
physics the use of these general algebraic methods of quantum mechanics
may be merely of practical advantage but not necessary, but in particle
physics they seem to be essential. It is this general form of quantum theory
that is presented here.

I have attempted to present the whole range from the fundamental assump-
tions to the experimental numbers. To do this in the limited space available
required compromises. My choice may, to a certain extent, reflect my
personal taste. But it was mainly influenced by what I thought was needed for
modern physics and by what I found, or did not find, in the standard text-
books. Detailed discussions of the Schrodinger differential equation for the
hydrogen atom and other potentials can be found in many good books.!
On the other hand, the description of the vibrational and rotational spectra
of molecules are hardly treated in any textbooks of quantum mechanics,
though they serve as simple examples for the important procedure of
quantum-mechanical model building. Also, **elementary particles are much
more similar to molecules than to atoms” (Heisenberg). So I have treated
the former rather briefly and devoted considerable space to the latter.

Groups have not been explicitly made use of in this book. However, the
reader familiar with this subject will see that group theory is behind most of
the statements that have been cast here in terms of algebras of observables.

This is a physics book, and though mathematics has been used extensively,
I have not endeavored to make the presentatien mathematically rigorous.
Most of the mathematics I believe to be rigorously justifiable within the
framework of the rigged Hilbert space, which—in contrast.to von Neumann’s
formation but in accord with Dirac’s presentation®—is assumed to be the
underlying mathematical structure. Except in the mathematical inserts,
which are given in open brackets [M: ], the reader will not even be made
aware of these mathematical details.

The mathematical inserts are of two kinds. The first kind provides the
mathematics needed, and the second kind indicates the underlying mathe-
matical justification. The whole first chapter is a mathematical insert of the
first kind. As presented here, the mathematics can only be appreciated in its
applications. This suggests the pedagogical advice that the reader should not
attempt to read the book in a linear fashion, one fully understood page after
another, but that he should be content to obtain a superficial under-

' It has. usually. also been adequately treated in an undergraduate course, ,
2 See, for instance, Dirac (1958), Jauch (1958), Ludwig (1954), and von Neumann (1932).
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standing of a subject at first reading and then return to it later for a deeper
understanding.

Quantum mechanics starts with Chapter II, where the most essential basic
assumptions (axioms) of quantum mechanics are made plausible from the
example of the harmonic oscillator as realized by the diatomic molecule.
Further basic assumptions are introduced in later chapters when the scope
of the theory is extended. These basic assumptions are not to be understood
as mathematical axioms from which everything can be derived without using
further judgment and creativity. An axiomatic approach of this kind does
not appear to be possible in physics. The basic assumptions are to be con-
sidered as a concise way of formulating the quintessence of many experlmen tal
facts.

The book consists of two clearly distinct parts, Chapters I1-X] and Chap-
ters XIV-XXI, with two intermediate chapters, Chapters XII and XIII.
The first part is more elementary in presentation, though more fundamental
in subject matter, and gives a more approximate description because it
treats all systems as stationary. Chapter XII introduces the basic assumption
of time development. Chapter XIII is just an application of previously
developed concepts and attempts to illustrate the characteristic features in
which quantum mechanics differs from the classical theories. The second
part, which starts with Chapter XIV, treats scattering and decaying systems.
The presentation there is much more advanced.

Chapter XIV gives a derivation of the cross section under very general
conditions, and Section XIV.5 may be the most difficult section of the book.
Section XIV.5 and Chapter XV may be omitted in first reading if the reader
can accept the results without derivation. Starting with Chapter XVI,
applications are restricted to rationally symmetric systems without spin.
Two different points of view—one in which the Hamiltonian time develop-
ment is assumed to exist, and the other making use of the S-matrix—are
treated in a parallel fashion. The required -analyticity of the S-matrix is
deduced from causality. One of the main features of the presentation is to

- _ treat discrete and continuous spectra from the same point of view. For this

the rigged Hilbert space is needed, which provides not only a mathematical
simplification but also a description which is closer to physics. In the last
chapter, the rigged Hilbert space is used to describe a decaying system by .
eigenvectors of the energy operator with complex energy This establishes
the link between the S-matrix description of a resonance at a pole and the
usual description of states by vectors in a linear space, and is another
example of the advantages that the rigged Hilbert space provides.

Written at the height of the atomistic point of view—this book tries to
expose also the complementary way of understanding, the holistic view.’
[See also Heisenberg’s last lecture published in Physics Today 29, 32 (1976).]
Though never mentioned explicitly except in the brief Epilogue, the duality
between atomism and holism is the recurring theme throughout the book.

Austin, Texas Arno B6hm
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CHAPTER |

Mathematical Preliminaries

The mathematical language of quantum mechanics is introduced in this
chapter. It does not contain much more than the basic definitions. A proper
understanding of this material will come through its application in the follow-
ing chapters.

1.1 The Mathematical Language of Quantum Mechanics

To formulate Newtonian mechanics, the mathematical language of dif-
ferential and integral calculus was developed. Though one can get some kind
of understanding of velocity, acceleration, etc., without differential calculus
(in particular for special cases), the real meanings of these physical notions
in their full generality become clear only after one is familiar with the idea
of the derivative. On the other hand, though, the abstract mathematical
definitions of calculus become familiar to us only if we visualize them in
terms of their physical realizations. Nowadays, no one would attempt to
understand classical mechanics without knowing calculus.

Quantum mechanics, too, has its mathematical language, whose develop-
ment went parallel to the development of quantum mechanics and whose
creation in its full generality was inspired by the needs of quantum physics.
This is the language of linear spaces, linear operators, associative algebras,
etc., which has meanwhile grown into one of the main branches of mathe-
matics—linear algebra and functional analysis. Although one might obtain

1



2 Mathematical Preliminaries

some sort of understanding of quantum physics without knowing its mathe-
matical language, the precise and deep meaning of the physical notions in
their full generality will not reveal themselves to anyone who does not under-
stand its mathematical language.

Therefore I shall start the quantum- -mechanics course with some of the
vocabulary and grammar of this language. I shall not try to be mathemati-
cally rigorous, since one can still communicate in a language that one does
not speak completely correctly. I shall. also not glve all the mathematics
that is needed at the beginning, and you need not be Worried if 3 you' de nhot
understand everything right away; one learns a language best by using it. I
shall give at the beginning only as much mathematics as is necessary to make
the initial statements about physics. We shall then have to learn new mathe-
matical notions whenever they arise, while we proceed with the development
of the physical ideas.

Before we start to study the mathematical structures that are employed
in quantum mechanics, we should make the folldwing observation: A
mathematical structure is not something real—it only exists in our mind
and is crcated by our mind (though often inspired by outside influences). It
is obtained by taking a set of objects and equipping this set with a structure,
by defining relations between these objects. Modern mathematics dis-
tinguishes three basic kinds of structures: algebraic, topological, and
ordering. The mathematical structures we use are complicated combinations
of these three. For example, the real numbers have an algebraic. structure
given by the usual Jaws of addition and mult;phcanon they have a topo-
logical stricture given by the meaning of the usual limiting process for an
infinite series of numbers, and they-have an ordering structure given by the
relations expressed by <.

We shall use predominantly algebraic structures, although in order to
speak the mathematical language of quantum mechanics correctly, topo-
logical structures are essential. We shall start with the definition of a linear
space, then introduce linear operators and give the definition of an associative
algeura. That will provide us with enough vocabulary and grammar to enable
a1s to start communicating physics, in the process of which the meaning of
these mathematical structures will be filled thh substance.

I 2 Lmear Spaces, Scalar Product

A'set R of elements ¢, ¥, x, ... is called a linear space if the sum ¢ + ¢ of
any two elements ¢, ¥ € R and the product a¢ of any element ¢ € R with
any complex number q are defined and have the following properties:

ifp, yeR, thend + Y eR. (2.1a)
d+y=y+¢ (2.1b)
@+V)+r=0+W+ ). (2.1¢)

Ta



Linear Spaces, Scalar Product 3

Thereexistsin R a “zero” element Osuchthat¢ + 0 = ¢forallp e R. (2.1d)

if € R, then ap e R. ' (2.1¢)
a(bg) = (ab)d. 2.11)
, 1-¢ =¢. (2.1g)
0- ¢ = 0 (the number zero appears on the left, the zero element on
the right), (2.1h) .
a(lp + ) =ad + ay, “(2.19)
. {a+b)p =ad + bo. (2.1j)

The element ( — 1)¢ is then usually denoted by — ¢ ; by properties 2.1g, k, h),
¢+ (=)= +(-1))¢ =09 =0.

The elements ¢, Y, x of the space R are called vectors. A set M in the linear

space R is called a subspace of R if M is a linear space under the same defini-

tions of the operations of addition and multiplication by a number as given

for R, i.e., if it follows from ¢, Yy € M that ape M and ¢ + Yy e M.

An expression of the form a;¢, + a,¢, + -+ + a,¢, is called a linear
combination of the vectors ¢,, @5, ..., @,; the vectors ¢y, ¢,, ..., d, are
said to be linearly dependent if there exist numbers a,, a,,...,a,, not
all zero, for which a,¢, + a; ¢, + --- + a,¢, = 0. If the equation a;¢, +
a,$, + -+ a,, =0 holds only for a; =a, =--- =a, =0, then the
vectors ¢,, ¢,,..., ¢, are called linearly independent. A space. R is said
to be finite-dimensional” and, more precisely, n-dimensional if there are n
and not more than n linearly independent vectors in R. If the number of
linearly independent vectors in R is arbitrarily great, then R is said to be
infinite-dimensional. Every system of n linearly independent vectors in an
n-dimensional space R is called a basis for R.

Every vector ¢ of an n-dimensional space R can be uniquely represented
in the form ¢ = a,e;, + --- + a,e,, where e,,e,,...,e, is a basis for R.
The numbers a, ..., a, are called the coordinates of the vector ¢ relative to
the basis ey, ..., e,.

Evidently, when vectors are added, their corresponding coordinates
relative to a fixed basis are added, and when a vector is multiplied by any
number, all the coordinates are multiplied by that number.

A linear space is called a scalar product space (or Euclidean space),if in it a
function (¢, ¥) is defined, having the following properties:

(¢,0) >0 and (¢,¢)=0iff ¢ =0. (2.2a)
W, 9) = (9, ¥) (2.2b)

(the bar denotes complex conjugate).
(¢, a¥) = a($, ¥) ‘ (2.2¢)

(a € C, the set of complex numbers).

(D) + &2, ¥) = (01, ¥) + (¢2. ¥). (2:2d)
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This function is called the scalar product of the elements ¢ and ¥. Such a
scalar product can be introduced in every finite-dimensional space; for

example, if e;,..., e, is a basis for R and ¢ = a,e; + -+ + a,e,, ¥ =
b,e, + -+ + b,e,, then, putti-g
(¢a ll/) = albl +- 4+ anbu’ (23)

we get a function (¢, ) satisfying the conditions (2.2).
With the scalar product one defines the norm ||¢]| of a vector ¢ € R by

9l = /&, b)- 2.4)

A complex-valued function h(¢, {r) of two vector arguments is a Hermitian
Jorm if it satisfies

o, ¥) = h(y, §), (2.5b)
h(¢, ay) = ah(¢,¥)  (aeC), (2.5¢)
h(éy + &5, ¥) = h($y, ¥) + h(¢2, ¥). (2.5d)
If in addition h satisfies
h(¢, ¢) = 0 (2.5a)

for every vector ¢, then h is said to be a positive Hermitian form. A positive
Hermitian form is called positive definite if

from h(¢,¢) =0 follows ¢ = O for every vector ¢. 2.6)

[Since the definition (2.5), (2.6) of a positive definite Hermitian form is
the same as that of a scalar product, from now on we shall use only the term
scalar product.] Positive Hermitian forms, which are not necessarily scalar
products, satisfy the Cauchy-Schwarz—Bunyakovski inequality:

[h($, W)I* < h($, DIA(Y, ¥). @7

If h is positive definite, equality holds iff ¢ = ay for some ce C.

Keeping ¥ fixed, (¢, ¥) = ¥(¢) is a function or functional of ¢ € R, and
as this functional fulfills the conditions (2.2¢), (2.2d), it is called an antilinear
Sunctional. In general every function F(¢) that fulfills

F(ag) = aF(¢), (2.82)
F(¢; + &) = F(¢,) + F(¢,) (¢1, 92€R) (2.8b)
is called an antilinear functional on the linear space R.
An antilinear functional is called continuous iff from the convergence

of the infinite sequence of elements ¢,€R (n = 1,2,3,...) to the
element ¢ € R, i.e., from

¢, P asn— o0, 2.9)
it follows that
F(¢,) —» F(¢) asn— . (2.10)



