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Prefacé

Mathematical method, as it applies in the natwral sciences in particular,
consists of solving a given problem (represented by a sumber of observed or
observable data) by neglecting so many of the details (these are afterward
termed “irrelevant™) that the remaining part fits imte an axiomatically estab-
lished model. Each model carries a theory, describimg the implicit features of
the model and its relations to other models. The rele of the mathematician
(in this oversimplified description of our culture) is to maintain and extend
the knowledge about the models and to create sew models on demand.
Mathematical analysis, developed in the 18th and 19¢h centuries to solve
dynamical problems in physics, consists of a series of models centered around
the real numbers and their functions. As examples, we mention continuous
functions, differentiable functans (of various orders), analytic functions, and
integrable functions; all classés of functions defined on various subsets of
cuclidean space R*, and severalﬂlsses also defimed with vector values. Func-
tional analysis was developed 5 the first third of the 20th century by the
pioneering work of Banach, Hilbert, van Neumana, aad Riesz, among others,
to establish a modet for the models of analysis. Comoentrating on “external”
properties of the classes of functions, these fit imto & model that draws its
axioms from (linear) algebra and topology. The creation of such “super-
models” is not a new phenomenon in mathematics,-and, under the name of
“generalization,” it appears in every mathematical theory. But the users of
the original models (astronomers, physicists, cagimeers, et cetera) naturaily
enough take a somewhat sceptical view of this dewelopment and complain
that the mathematicians now aré doing mathemaatics for its own sake. As a
mathematician my reply must be that the abstraction process that goes into
functional analysis is necessary to survey and to sasster the enormous material
we have to handle. It is not obvious, for example,thata differential equation,
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a system of linér equations, and a problem in the calculus of variations have
anything in common. A knowledge of operators on topological vector spaces ..
gives, however, a basis of reference, within which the concepts of kernels,
eigenvalues, and inverse transformations can be used on all three problems.
Our critics, especially those well-meaning pedagogues, should come to realize
that mathematics' becomes simpler only through abstraction. The mathe-
matics that represénted the conceptual limit for the minds of Newton and
Leibniz is taught regularly in our high schools, because we now have a clear
(i.e. abstract) notion of a function and of the real numbers.

When this defense has been put forward for official use, we may admit in
private that the wind is cold on the peaks of abstraction. The fact that the
objects and examples in functional analysis are themselves mathematical
theories makes communication with nonmathematicians-almost hopeless and
deprives us of the feedback that makes mathematics more than an aesthetical
play with axioms. (Not that this aspect should be completely neglected.) The
dichotomy between the many small and directly applicable models and the
large, abstract supermode} cannot be explained away. Each must find his own
way between Scylla and Charybdis.

The material contained in this book falls under Kelley’s label: What Every
Young Analyst Should Know. That the young person should know more (e.g.
more about topological vector spaces, distributions, and differential equa-
tions) does not invalidate the first commandment. The book is suitable for a
two-semester course at the first year graduate level. If time permits only a
one-semester course, thén Chapters 1, 2, and 3 is a possible choice for its
content, although if the leved of ambition is higher, 4.1-4.4 may be substituted
for 3.3-3.4. Whatever choice is made, there should be time for the student to
do some of the exercises attached to every section in the first four chapters.
The exercises vary in the extreme from routine calculations to small guided
research projects. The two last chapters may be regarded as huge appendices,
but with entirely different purposes. Chapter 5 on (the spectral theory of)
unbounded operators builds heavily upon the material contained in the
previous chapters and is-an end in itself. Chapter 6 on integration theory
depends only on a few key results in the first three chapters (and may be
studied simultaneously with Chapters 2 and 3), but many of its results are
used implicitly (in- Chapten 2-5) and explicitly (in Sections 4.5-4.7 and 5.3)
throughout the text.

This book grew out of a course on the Fundamentals of Functional
Analysis given at The -University of Copenhagen in the fall of 1982 and again
in 1983. The primary aim is to give a concentrated survey of the tools of
modern analysis. Within each section there are only a few main results—
labeled theorems—and the remaining part of the material consists of sup-
porting lemmas, explanatory remarks, or propositions of secondary i impor-
tance. The style of wntmg is of necessity compact, and the reader must be
prepared to supply minor details in some arguments. In principle, though, the
book is “self-contained.” However, for convenience; a list of classic or-estab-
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lished textbooks, covering (parts of) the same material, has been added. In the
Bibliography the reader will aiso find a number of original papers, so that she
can judge for herself “wie es eigentlich gewesen.”

Several of my colleagues and students have read (parts of) the manuscript
and offered valuable criticism. Special thanks are due to B. Fuglede, G. Grubb,
E. Kehlet, K.B. Laursen, and F. Topsee.

The title of the book may convey the feeling that the message is urgent and
the medium indispensable. It may as well be construed as an abbreviation of
the scholarly accurate heading: Analysxs based on Norms, Operators, and
Weak topologies.

Copenhagen ' Gert Kjergard Pedersen
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CHAPTER 1
General Topoldgy

General or set-theoretical topology is the theory of continuity and conver-
gence in analysis. Although the theory draws its notions and fundamental
examples from geometry (so that the reader is advised always to think of a
topological space as something resembling the euclidean plane), it applies
most often to infinite-dimensional spaces of functions, for which geometrical
intuition is very hard to obtain. Topology allows us to reason in these situa-
tions as if the spaces were the familier two- and three-dimensional objects, but
the process takes a little time to get used to.

The material presented in this chapter centers around a few fundamental
topics. For example, we only introduce Hausdorff and normal spaces when
separation is discussed, although the literature operates with a hierarchy of
more than five distinct classes. A mildly unusual feature in the presentation
is the central role played by universal nets. Admittedly they are not easy to
get aquainted with, but they facilitate a number of arguments later on (giving,
for example, a five-line proof of Tychonoff’s theorem). Since universal nets
entail the blatant use of the axiom of choice, we have included (in the regie
of naive set theory) a short proof of the equivalence among the axiom of
choice, Zorn’s lemma, and Cantor’s well-ordering principle. All other topics
from set theory, like ordinal and cardinal numbers, have been banned to the
exercise sections. A fate they share with a large number of interesting topo-
logical concepts.

1.1. Ordered Sets

Synopsis. The axiom of choice, Zorn’s lemma, and Cantor’s well-ordering
principle, and their equivalence. Exercises.

T



2 1. General Topology

1.1.1. A binary relation in a set X is just a subset R of X x X. It is customary,
though, to use a relation sign, such as <, to indicate the relation. Thus
(x,y) € R is written x < y.

An order in X is a binary relation, written <, which is transitive (x < y and
y < z implies that x < z), reflexive (x < x for every x), and antisymmetric
(x < yand y < ximplies x = y). We say that (X, <)is an ordered set. Without

-the antisymmetry condition we have a preorder, and much of what follows
will make sense also for preordered sets.

An element x is called a majorant for a subset Y of X, if y < x for every y
in Y. Minorants are defined analogously. We say that an order is filtering
upward, if every pair in X (and, hence, every finite subset of X) has a majorant.
Orders that are filtering downward are defined analogously. If a pair x, y in
X has a smallest majorant, relative to the order <, this element is denoted
x v y. Analogously, x A y denotes the largest minorant of the pair x, y, if it
exists. We say that (X, <) is a lattice, if x v y and x A y exist for every pair

. X, yin X. Furthermore, (X, <) is said to be totally ordered if either x < y or
¥ < x for every pair x, y in X. Finally, we say that (X, <) is well-ordered if
every nonempty subset Y of X has a smallest element (a minorant for Y
belonging to Y). This element we call the first element in Y,

Note that a well-ordered set is totally ordered (put Y = {x, y}), that a totally
ordered set is a (trivial) lattice, and that & lattice order is both upward and
downward filtering. Note also that to each order < corresponds a reverse
order >, defined by x > yiff y < x. - ’

1.1.2. Exampiles of orderings are found in the number systems, with their usual
orders. Thus, the set N of natural numbers is an example of a well-ordered
set. (Apart from simple repetitions, N U N U - -, this is also the only concrete
example we can write down, despite 1.1.6) The sets Z and R are totally
ordered, but not well-ordered. The sets Z x Z and R x R are lattices, but not
totally ordered, when we use the product order, ie. (x,,x,) < (y,,y,) when-
ever x, < y; and x, < y,. [If, instead, we use the lexicographic order, i.c.
(%1, X3) S (yy;y,) if cither x, < y,, or x, = y, and x,'< y,, then the sets
become totally ordered.)- - s :

An important order on the system % (X) of subsets of a given set X is given
by inclusion; thus 4 < B if A = B. The inclusion order turns &(X) into a
lattice with @ as first and X as last elements. In applichtions it is usually the
reverse inclusion order that is used, i.e. A < Bif 4 > B. For example, taking
X to be a sequence (x,) of real numbers converging to some x, and putting
T, = {x:{k 2 n}, then clearly it is the reverse inclusion order on the tails T,
that describe the convergence of (x,) to x.

1.1.3. The axiom of choice, formulated by Zermelo in, 1904, states that for each
nonempty set X there is a (choice) function

c: LX)\ {0} - X,
satisfying c(Y) € Y for every Y in £(X)\ {#).
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Using this axiom Zermelo was able to give a satisfactory proof of Cantor’s
well-ordering principle, which says that every set X has an order <, such that
(X, <) is well-ordered. “ : :

The well-ordering principle is a necessary tool in proofs “by induction,”
when the set over which we induce is not a segment of N (go-called‘zransﬁ'nite
induction). More recently, these proofs have been replaced by variations that
pass through the following axiom, known in the literature as Zorn’s lemma
(Zorn 1935, but used by Kuratowski in 1922). Let us say that (X, <) is
inductively ordered if each totally ordered subset of X (in the order induced
from X), has a majorant in X. Zorn’s lemma then states that every inductively
ordered set has a maximal element (i.¢. an element with no proper majorants).

1.1.4. Let (X, <) be an ordered set and assume that ¢ is a choice function for
X. For any subset Y of X, let maj(Y) and min(Y), respectively, denote the sets
of proper majorants and minorants for Y in X. Thus x € maj(Y) if y < x for
every y in Y, where the symbol y < x of course means y < x and y # x.

A subset C of X is called a chain if it is well-ordered (relative to <) and if -
for each x in C we have

c(maj(C nmin{x})) = x. (*)
Note that c(X) is the first element in any chain and that {e(X)} is a chain
(though short). -
LLS. Lemma. If C, and C, are chaifis in X such that C, ¢ C,, there is an
element x, in C, such that .

C; = C, nmin{x, }.

PROOF. Since C;\C; # @ and C, is well-ordered, there is a first element x  n
C\C;. By definition we therefore have
() C, nmin{x,} = C,.
If the inclusion in (i) is proper, the set C, \(C; nmin{x, }) has a first element
Xy, since C, is well-ordered. By definition, therefore,
(ii) C;nmin{x,} = C; nmin{x,}.
If the inclusion in (ii) is proper, the set (C; nmin{x, })\min{x,} (contained
in C; n C,) has a first element y. By definition
(iii) C, nmin{y} = C; nmin{x,}.
However, if y < x for some x in C, n min {x2}, then y € C, A min{x,}, con-
tradicting the choice of y. Since both x and y belong to the well-ordered, hence
totally ordered, set C,, it follows that x < y for every x in C, nmin{x,}.
Thus in (iii) we actually have equality. Since both C, and C, are chains

(relative to the same ordering and the same choice function), it follows from
the chain condition () in 1:1.4 that y = x;. But ye C, nmin{x,} while
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x; ¢ C, nmin{x,}. To avoid a contradiction we must have equality in
(ii). Applying the chain condition to (ii) gives x, = x, in contradiction with
X, ¢ C, and x, € C,. Consequently, we have equality in (i), which is the desired
result. o a

1.1.6. Theorem. The following three propositions are equivalent:

(i) The axiom of choice.
(ii) Zorn’s lemma.
(iii) The well-ordering principle.

PROOF (i) = (ii). Suppose that (X, <)isinductively ordered, and by assumption
let ¢ be a choice function for X. Consider the set {C;|j € J} of all chains in X
and put C = () C;. We claim that for any x in C; we have

C nmin{x} = C;nmin{x}. (»)

For if y belongs to the first (obviously larger) set, then y € C, for some i in J.
Either C, = C;, in which case ye C;, or C; ¢ C,. In that case there is by 1.1.5 an
x; in C; such that C; = C;nmin{x;}. As y < x < x,, we again see that y € C,.
It now follows easily that C is well-ordered. For if @ # Y < C, there is a j
in J with C; " Y # @. Taking y to be the first element in C;n Y it follows from
(»+) that y is the first element in all of Y. Condition (+#) also immediately shows
that C satisfies the chain condition (*) in 1.1.4. Thus C is a chain, and it is
clearly the longest possible. Therefore, maj(C) = @. Otherwise we could take

Xo = c(maj(C)) € maj(C),

and then C L {x,} would be a chain [(*) in 1.1.4 has just been satisfied for x,]
effectively longer than C. o

Since the order is inductive, the set C has a majorant x, in X. Since
maj(C) = @, we must have x,, € C, i.e. x,, is the largest element in C. But then
X,, is a maximal element in X, because any proper majorant for x, would
belong to maj(C). '

(ii) = (iii). Given a set X consider.ghe system M of well-ordered, nonempty
subsets (C;, <) of X. Note that M @, the one-point setsre trivial members.
We define an order < on M by setting (C;, <,) < (C,, <)) if either C, = C,and
<, = <, or if there is an x; in C,; such that

C‘ = {x € C.:,Ix Slx)} and S( = SJIC[- (“*)

The claim now is that (M, <) is inductively ordered. To prove this, let N be a
totally ordered subset of M and let C be the union of all C;in N. Define' < on
Cby x < y whenever {x,y} = C;e N and x <, y. Note that if {x,y} = C,e N,
then x <,y iff x <;y because of the total ordering of N, so that < is a
well-defined order on C. Exactly as in the proof of (i) = (ii) one shows that if
x € G, then .

c A min {x} = C;Amin{x} C (sw)
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(the result of 1.1.5 has been built into the order on M). As before, this implies
that (C, <) is well-ordered. The conclusion that (C, <) is a majorant for N is
trivial if N has a largest element (which then must be C). Otherwise, each
(Ci, <) has a majorant (C;, <;) in N and is thus of the form (+s+) relative to
C;; and, as (#+) shows, also of the form («#+) relative to C. We conclude that
(C, <) is a majorant for N, which proves that M is inductively ordered.

Condition (ii) now implies that M has a maximal element (X,, <,). If
X, # X, we choose some x,, in X\ X,, and extend <, to X,, U {x,,} by setting
X £, X, for every x in X,,. This gives a well-ordered set (X, U {x,,}, <,,) that
majorizes (X, <,) in the ordering in M, contradicting the maximality of
(Xus <o) Thus X = X, and is consequently well-ordered.

(iii) = (i). Given a nonempty set X, choose a well-order < on it. Now define
¢(Y) to be the first element in Y for every nonempty subset Y of X. O

1.1.7. Remark. The subsequent presentation in this book builds on the ac-
ceptance of the axiom of choice and its equivalent forms given in 1.1.6. In the
intuitive treatment of set theory used here, according to which a set is a
properly determined collection of elements, it is not possible precisely to
explain the role of the axiom of choice. For this we would need an axiomatic
description of set theory, first giyen by Zermelo and Fraenkel. In 1938 Godel
showed that if the Zermelo-Fraenkel system of axioms is consistent (that in
itself an unsolved question), then the axiom of choice may be added without
violating consistency. In 1963 Cohen showed further that the axiom of choice
is independent of the Zermelo—Fraenkel axioms. This means that our accep-
tance of the axiom of choice determines what sort of mathematics we want to
create, and it may in the end affect our mathematical description of physical
realities. The same is true (albeit on a smallef gcale) with the parallel axiom
in euclidean geometry. But as the advocates of the axiom of choice, among
them Hilbert and von Neumann, point out, several key results in modern
mathematical analysis [e.g. the Tychohoff theorem (1.6.10), the Hahn—Banach
theorem (2.3.3), the Krein-Milman theorem (2.5.4), and Gelfand theory (4.2.3)]
depend crucially on the axiom of choice. Rejecting it, one therefore loses a
substantial part of mathematics, and, more important, there seems to be no
compensation for the abstinence.

EXERCISES

EL1Ll A subset & of a real vector space X is called a cone if ® + R = R
and R, & = K. Ifin addition —R N & = {0} and & — & = X, we say
that R generates X. Show that the relation in X defined by x < y if
y—x e R is an order on X if & is a generating cone. Find the set
{x € X|x 2 0}, and discuss the relations between the order and the
vector space structure. Find the condition on & that makes the order
total. Describe some cones in R" forn = 1, 2, 3.

*



