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Preface

Many partial differential equations arising in practice are parameter-dependent
problems and are of singularly perturbed type for small values of this param-
eter. These include various plate and shell models for small thickness in solid
mechanics, the convection-diffusion equation, Oseen equation, and Navier-Stokes
equations in fluid flow problems where the fluid is assumed to have small viscos-
ity, and finally equations arising in semi-conductor device modelling. Analysis
of such equations by numerical methods such as the finite element method is
an important task in today’s computational practice. A significant design as-
pect of numerical methods for such parameter-dependent problems is robust-
ness, that is, that the performance of the numerical method is independent of,
or at least fairly insensitive to, the parameter. Numerous methods have been
proposed and analyzed both theoretically and computationally for a variety of
singularly perturbed problems—we merely refer at this point to the three recent
monographs [97,99,108] and their extensive bibliographies.

Most numerical methods employed in the study of singularly perturbed prob-
lems are low order methods such as the classical h-version finite element method
(FEM), where convergence is obtained by refining the mesh while keeping the
approximation order fixed. In high order methods such as the hp-version of the
finite element method (hp-FEM), mesh refinement can be combined with increas-
ing the approximation order; for certain problem classes, this added flexibility
of the hp-FEM allows it to achieve exponential rates of convergence.

The present book is devoted to a complete analysis of the hp-FEM for a class of
singularly perturbed problems on curvilinear polygons. To the knowledge of the
author this work represents the first robust ezponential convergence result for a
class of singularly perturbed problems under realistic assumptions on the input
data, that is, piecewise analyticity of the coefficients of the differential equation
and the geometry of the domain.

This work is at the intersection of several active research areas that have their
own distinct approaches and techniques: numerical methods for singular per-
turbation problems, high order numerical methods for elliptic problems in non-
smooth domains, regularity theory for singularly perturbed problems in terms of
asymptotic expansions, and regularity theory for elliptic problems in curvilinear-
polygons. Although, naturally, the present work draws on techniques employed
in all of these fields, new tools and regularity results for the solutions had to be
developed for a rigorous robust exponential convergence proof.

This book comprises research undertaken during my years at ETH Ziirich. I take
this opportunity to thank Prof. Dr. C. Schwab for many stimulating discussions
on the topics of this book and for his support and encouragement over the years.

Leipzig, June 2002 J.M. Melenk



Notation X1

Notation

General notation

CcC
| K}
Eq

Matrices
Mn
Sn

S%

The set of positive integers, {1,2,...,}.

The set of non-negative integers NU {0}.

The set of integers Ny U —N.

The real, the positive real, and the non-negative real numbers.
The complex numbers.

The imaginary unit with i = —1.

The Gamma function with I'(j + 1) = j! for j € Ny.

The Kronecker symbol: §;; = 0 for i # j and é;; = 1.

Generic constants independent of critical parameters such as €, the
differentiation order, the polynomial degree, etc. These constants
may be different in different instances.

|z] =max{n € Z|n < z}.

In Section 5.5: [p] = max {1,p} for p € Z (see p. 198). In all other
sections [ -] denotes the jump operator.
Compact embedding.

for X C R™ represents the Lebesgue measure (volume) of K.

The characteristic function of the set f2.

The set of (real) n x n matrices.
$™ C M" are the symmetric matrices.
The set of symmetric positive definite matrices.

For matrices A, B, weset A: B = Zi‘j Ai;jBij.

Sets, balls, sectors, neighborhoods

B, (x)
Bg, B,
Bp

Uk (K)

S

Sr(w)

The ball of radius r around the point z.
Ball and half balls with radius R; see (5.5.1).

The k-neighborhood of the set K, i.e., Uzek Be(z).
A generic sector, Definition 4.2.1, p. 146.

A sector with opening angle w, see (4.1.2).



XII Notation

S5 (),
So (w)
I, I

SX7
Sx(6)

Conical neighborhood of the lateral parts Iy, I, of the sector Sg(w),
see (5.4.30).

Intervals on R; I is the form I, = [0,b] for a b > 0; see outset of
Section 7.3.1.
Complex neighborhoods of interval I, see (7.3.11).

Norms, differential operators, standard function spaces

L*(12)
H*(0)

A(G,R™)

A(G,S™)

The space of square integrable functions.

Sobolev space H* of L2-functions whose distributional derivatives
of order up to k are also in L?; cf. [1].
Sobolev space of H!-functions with vanishing trace on 82; cf. [1].

The Sobolev space of H! functions with vanishing trace on 812
equipped with the energy norm || - || 20y + €[]V - ||12(0); cf. p. 184.
The usual Sobolev space H/2; cf. [1].

The usual Sobolev space H(;f; cf. [1].
Energy norm |[ul|c ~ [|ullL2(0) + €l|VullL2(0); cf. p. 3.
Exponentially weighted energy norm, cf. p. 243.

For multi-indices a = (ay,...,a,) € N} and (smooth) functions u
defined on an open subset of R": D%u = 8¢! 032 --- 05" u.
|VPu(z)|® = Z 10, Oy =+ Oa, u(z)|?, where, for

tensor-valued functions u = (u;)Y.; and shorthand 8, u for 3, u

100, Oy = Oay, u(@)|* = Zl o O ui()]%.

For domains G C R" (or (C") A(G) denotes the set of functions
analytic on G. For closed sets G, f € A(G) is understood to imply
the existence of an open neighborhood of G on which f is analytic;
see also (1.2.2).

The set of vector-valued functions that are (componentwise) ana-
lytic on G.

The set of functions from G to the symmetric positive definite ma-
trices SZ that are (componentwise) analytic on G.

The differential operator, (1.2.1).

The jump operator across a curve. Only in Sec. 5.5: [p] = max {1, p}

for p € Z; p. 198.
The co-normal derivative operator n7 V-.
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Weight functions and weighted spaces

qspﬁ,s
dsp,ﬁ,e

¥y 5.e.a
Yy B.ea
H
B
HEY

BBE&
&

Weight function in a sector, p. 147.

Weight function in a curvilinear polygon, p. 184.
Exponentially weighted weight function in a sector, p. 231.
Exponentially weighted weight function in {2; see (7.4.7).
Weighted Sobolev space, p. 149.

Countably normed space, p. 149.

Exponentially weighted Sobolev space, p 232.
Exponentially weighted countably normed space, p. 232.

Smallest characteristic length scale, p. 177.

Semi norms for controlling high order derivatives

Npp(u),
N}z,,q( u),

qu(u)
MH,p(f)

Mg, (f),
MR»p(f),
Np ()

Ny (w),

HR,i(u)a
!

My (f)

Bounds on higher derivatives of u, p. 198.

Bounds on higher derivatives of f, p. 202.

Bounds on higher derivatives of f and u, p. 208.

Bounds on higher derivatives of u and f, p. 217.

Description of the boundary and corner layer

(]

Aj

I

S, S+, 57
'Qj) XBL,
XCVL

Qj, X] )
xjc’“

Boundary fitted coordinates (z,y) = ¥;(pj,8;) in neighborhood of
arc I'j, where p; measures the distance of the point (z, y) to I; see
Notation 2.3.3

Vertex of the curvilincar domain {2, Section 1.2.

Analytic arc being part of the boundary of the curvilinear polygon
2, Section 1.2.
Sectors near A; for the definition of corner layer, (7.4.2), (7.4.3).

Subdomains of 2 and cut-off functions associated with arcs I'; and
the vertices A;; see Notation 2.3.3 and outset of Section 7.4.1.

Subdomains of §2 and cut-off functions associated with arcs I'; and
the vertices A;; see Notation 2.3.3.

Anisotropic and anisotropic stretching maps; see Notation 2.4.3.
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Polynomials, approximation, and projections

1,S,T The reference interval I = (0,1), square S = I x I, and triangle
T={zy))0<zx<1,0<y <1z}, p. 87.

S, T The references square and triangle in Section 3.2.3; see (3.2.19).
Po(T), Spaces of polynomials, p. 87.

p(9),

1I,(K)

P{*? Jacobi polynomials, see [124].

Ly, L, L,= P,SO’O) is the usual Legendre polynomial; L,(z) = Ly(2z — 1).
Yp.q Orthogonal polynomials on the triangle, (3.2.23).

GL Gauss-Lobatto points, p. 87.

tps Jp 1D and 2D Gauss-Lobatto interpolation operators, p. 87.

ip, I Gauss-Lobatto interpolation operator on an edge I, p. 88.

E Polynomial extension operator from the boundary, p. 89.

I Polynomial projector defined in Theorem 3.2.20, p. 103.

1> Polynomial projector defined in Theorem 3.2.24, p. 108.

Hﬁz The L? projector into the space P.

Meshes and finite element approximation

T Triangulation, p. 39.

SP(T), Spaces of piecewise mapped polynomials of degree p on the mesh
SE(T) T, p. 113.
5o Elementwise application of IT3° on a mesh 7, p. 113.
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1. Introduction

1.1 Introduction

1.2 Problem class and assumptions

This work presents numerical analysis and regularity results for singularly per-
turbed equations of the form (1.2.1). Such equations are ubiquitous, appearing,
for example in convection-dominated fluid flow, in semi-conductor device mod-
elling, and solid mechanics (where their analysis is crucial for an understanding
of the layer structure of Reissner-Mindlin plate models, [9,10]).

We consider the following class of singularly perturbed equations:

Leu, = —€2V - (A(z)Vue) + b(z) - Vue + ¢(z)ue = fon 2, (1.2.1a)
ue = g on 0£2. (1.2.1b)

The bounded Lipschitz domain 2 C R? is assumed to be a curvilinear polygon
as depicted in Fig. 1.2.1. The boundary 32 is assumed to consist of finitely

(1 (1)
FJ,) =TI

Afll‘) - Aél)
Fig. 1.2.1. A curvilinear polygon.

many curves I'9 i.e., 802 = UN ") each of which consists of finitely many
analytic arcs Fj(’): o
D) _ i p(®)
rY=ul "
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The arcs I ;i) are parametrized by

(D) _ g0 (1)
I = {(z;7(0),y;"(6) |6 € (0,1)},
where the functions z(j), y;i) are analytic on a neighborhood of the interval [0, 1].
We assume that

(t)

Y| > 0 on [0,1] for all 4, j.

The curves I‘j(i) are oriented such that the domain {2 is “on the left”; that is, the

normal vector (~4 (-i)(H), g g’) (#)) points into 2 (cf. Fig. 1.2.1). The endpomts

of the arc Fj( are the vertlces (’) (z(')(O) y(')( 0)), A;') = (2!’ z; (1),y], (1)),
and we set A( = A . The mternal angle at vertex Aj) is denoted w;i), and
we exclude cusps by stlpulatlng 0 < W' < 2. In order to simplify the notation
in this work, we assume without loss of generality that N = 1 and drop the
superscript (7); i.e., we write J = J, I} = Fj(l), Aj = A;-l), etc. It is also
convenient to write I'g = I'y.

The remaining data appearing in (1.2.1) are assumed to be analytic: We suppose
that ¢ € A(R), b € A(R,R?), and 4 € A(12,S2); i.e., we stipulate the existence
of Cy4, Cp, C, and v4, V», Y. > 0 such that

IVPA|lL=(2) < Cavhip!  VpeN,, (1.2.2a)
VPOl () < Cyyppt  Vpe N, (1.2.2b)
IVPc|lpe(o) < Chfp! VpeN. (1.2.2¢c)

Furthermore, the matrix A(z) is symmetric positive definite for each z € 2 and
there exists Ain > 0 such that

A(z) > Amin Yz € 0. (1.2.2d)

We require the existence of g > 0 such that
1
—§(V b z)+e(x)y>u>0 Yz € 2. (1.2.2¢)

The right-hand side f in (1.2.1) satisfies f € A(f2), i.e., there are Cy, v > 0
such that
VP fllLeoy < Cprpp! VP € No. (1.2.3)
Finally, the boundary data g € C(812) are assumed to be analytic on the arcs I';:
For each j, the function g(z;,y;) is analytic on [0,1], i.e., there are Cyg, 74 > 0
such that
I[DPg(x;(-), yi (MlL=(0.1)) < Cor5P! Vp€eNy. (1.2.4)
For most of our analysis, the singular perturbation parameter ¢ € (0,1] is as-
sumed to be small, ie., e < 1.
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Remark 1.2.1 The assumption of analyticity of the data on {2 can be relaxed.
In fact, in most of the subsequent analysis, only piecewise analyticity of the data
A, b, ¢, f, and g needs to be assumed. .

Solutions of (1.2.1) are understood in the weak sense; i.e., u. is the solution of
the following problem:

Find u, € H'(2) s.t. uc|pp = g and Be(u.,v) = F(v) Vv € Hg(R2). (1.2.5)

Here, the bilinear form B, and the linear form F are defined by

B (u,v) := 62/ (A(z)Vu) - Vv + b(z) - Vuv + c(z)uvdz, (1.2.6a)
ol

F(v) :::/ f(z)vdz. (1.2.6b)
?
This bilinear form B, is closely connected with the energy norm
l[ull? == IVull2(a) + llulliz(q) (1.2.7)

as will become apparent in the subsequent Lemma 1.2.2. The bilinear form Bk is
coercive on the space H} ({2), and the variational formulation (1.2.5) has a unique
solution even under the weaker assumptions f € L2(f2) and g € H'/2(80):

Lemma 1.2.2. Let the coefficients A, b, ¢ satisfy (1.2.2), € € (0,1], and let
f € LX(2), g € HY/*(30). Then there exists a unique solution u, of (1.2.5) and
a constant C > 0 independent of €, f, and g such that

elVauell L2 + Nuellrzie) < € (1F o) + Nallmrz) -
Moreover, the bilinear form B is coercive on the space H}(£2), and there holds
B.(,0) > AminlVullfaoy + illullfag)  Vu€ HY(D).  (128)

The bilinear form B, is also continuous on the space HY(£2): There isC > 0
independent of A, b, ¢, and € such that for all u, v € HY(0) we have:

|B: (u,v)| < C [I|AllL=(2) + llellLe) + [bllz=(2e ™" ] lulle lo]le. (1.2:9)

Proof: (1.2.9) follows immediately from the Cauchy-Schwarz inequality.
As a first step, we show (1.2.8). We start by noting that for u € H}(2), an
integration by parts gives

/(b»Vu)udz: —/(V~b)u2+u(b-Vu)dz.
(73 (0]

Therefore, .
/ (b- Vu)udr = — 2 / (V- b)u’ dx.
) 2/a
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Combining this with assumption (1.2.2e) implies the coercivity of the bilinear
form B, on the space H}(§2):

B.(u,u) = €® /n (A(z)Vu) - Vu + (b(z) - Vu)u + c(z)u® dx

= 52/ (A(z)Vu) - Vu + (c(z) - %V . b(z)) u? dzx
(9]
> EzAminllvu”iZ(Q) + [l”u“iz(g).

This coercivity gives uniqueness of the solution of (1.2.5). In order to see exis-
tence of a solution, let G € H!(§2) be an extension of g into {2 satisfying

Glaa =9, Gllur () £ Clglimzpa)

for some C' > 0 depending only on {2. The difference @ := u, — G must be the
solution of the problem:

Find @ € HY(2) s.t. Be(@,v) = F(v) — Be(G,v)  Yv € Hy(R2). (1.2.10)
We see that for all v € H!(12)
[F(v) = Be(G, )] < | fllezoyllvlizz(0)

+ C{lIGN 1 (e IVl L2y + G H (vl L2y + Gl L2y vl L2y }
< C{llfll2cay + IG a1 2y } Ille,

where we assumed ¢ < 1. Therefore, by the classical Lax-Milgram Lemma, [36,
82], (1.2.10) indeed has a unique solution @ satisfying

lalle < C [Ifllz2qa) + Gl ()] -
Using € < 1, we see that u. := G + @ satisfies the desired bounds. ]

The greater part of our analysis will be done for the special case b = 0; i.e., we
consider the following singularly perturbed problem of elliptic-elliptic type:

-2V - (A(x)Vue) + c(z)ue = f on £, (1.2.11a)
U = ¢ on 842, (1.2.11b)

where assumption (1.2.2e) implies that ¢ > g > 0 on (2.

1.3 Principal results

The main result of the present work is the robust exponential convergence result
Theorem 2.4.8 for high order finite element methods applied to (1.2.11). It is
shown that with the proper choice of conforming subspaces Vy of dimension



1.3 Principal results 5

N € N, the finite element method, i.e., Galerkin projection, yields approximants
uN to the exact solution u. that satisfy

llue — uN||. < Ce N, (1.3.1)

Here, the constants C, b > 0 are independent of ¢; in fact, in our numerical
experiments in Section 2.5 b &~ 1 and likewise C = O(1). The finite element
spaces Vv are given explicitly in Section 2.4. They consist of the usual piecewise
polynomial spaces of degree p defined on meshes that are adapted to the length
scale ¢ of the problem. Specifically, for the approximation with polynomial of
degree p, these meshes are designed according to three principles:

1. near the edges of the domain, long, thin needle elements of width O(pe) are
employed in order to capture boundary layer phenomena;

2. in an O(pe) neighborhood of the vertices a geometric mesh refinement is
used in order to resolve corner singularities;

3. in the interior of the domain a standard coarse mesh is utilized for the
resolution of smooth solution components.

It is worth stressing that the only information required for an application of these
mesh design principles is the length scale ¢ of the problem, which is typically
known in practice.

Let us compare our robust exponential convergence result with previous con-
vergence analyses. Thus far only algebraic robust convergence results have been
available, typical of low order methods. Robust algebraically convergent meth-
ods deliver approximate solutions u¥ from spaces Vx of dimension N € N that
satisfy error bounds of the form

ue — ul)). <CN~°. (1.3.2)

Here, C, a > 0 are independent of €. Even for optimally chosen meshes, a < 2
is typical for two-dimensional problems. A good measure for comparing approx-
imation results (1.3.1) and (1.3.2) is the alphanumerical work W required to
compute the approximate solution uY. In the case of low order methods, an
efficient iterative solver such as multigrid, {65], is essential for acceptable solu-
tion times. Such an optimal solution algorithm would solve the resulting linear
system with linear complexity, i.e., W = O(N). The best rate of convergence of
these low order methods in terms of work W is therefore

lue — u|le <CW.

This work estimate, however, is based upon two strong assumptions. First, in
order for o to be reasonable, e.g., a = 1, the mesh has to be carefully designed so
as to capture the relevant features of the solution. In particular, it has to contain
highly anisotropic elements in the boundary layer. However, most state-of-the-
art adaptive strategies do not allow for such elements: Their use of shape-regular
elements precludes robustness, and the convergence rates visible in practice are



