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PREFACE

The serial publication ‘“Advances in Heat Transfer’” is designed to fill the
information gap between the regularly scheduled journals and university
level textbooks. The general purpose of this series is to present review articles
or monographs on special topics of current interest. Each article starts from
widely understood principles and in a logical fashion brings the reader up to
the forefront of the topic. The favorable response to the volumes published
to date by the international scientific and engineering community is an indica-
tion of how successful our authors have been in fulfilling this purpose.

The editors are pleased to announce the publication of Volume 8§ and wish
to express their appreciation to the current authors who have so effectively
maintained the spirit of the series.
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I. Introduction

With the recent advancements in the fields of atomic energy, aeronautics,
and astronautics, an engineer is faced with more and more complex problems
in heat transfer. While sophisticated instrumentation has greatly helped him
to achieve accuracy and reliability in experimental measurements, the
computer has immensely increased his capacity to theoretically study more
realistic models. These advancements, however, are no substitute for the
power and ingenuity of the mathematical methods which are, and would
remain as, the main tool in the hands of engineers for the solution of practical
problems. In the present review some of the most important methods
employed in recent heat transfer literature will be reviewed, with a special
stress on those still under development, and examples from the literature
cited, to demonstrate the power of a method and indicate the branches of
heat transfer where one may look upon a particular method as a potential
tool for obtaining the solution. While reviewing a particular method,
examples will be presented from the recent literature irrespective of the
location of the problem in the hierarchy of heat transfer literature. Thus, it
will be attempted to synthesize the recent developments in heat transfer from
the point of view of mathematical methods. From a physical point of view,
these developments have already been brought to light in a systematic and
cohesive manner in the recently published monographs [1-7]. No claim to
completeness of the review is made in view of the limitations of space and
the availability of other literature, especially of Soviet literature.

No reference will be made in this review to the method of weighted
residuals or integral methods. A review of these methods by Finfayson and
Scriven [8] and an account of their application to unsteady heat conduction
[9] have recently appeared. Similarly, the classical method of operational



RECENT MATHEMATICAL METHODS IN HEAT TRANSFER 3

calculus used extensively by Carslaw and Jaeger [10] and Luikov {11} in
the theory of heat conduction and by Luikov and Mikhaylov [12] in the
theory of combined heat and mass diffusion will not be touched upon.

It would not be out of place here to mention a few words about nomencta-
ture. Although highly desirable, it is very difficult to achieve uniform nomen-
clature in a review article of this nature, where various branches of heat
transfer and many mathematical methods used therein are being reviewed.
Therefore, for ease of reference, a comprehensive nomenclature has been
provided separately for each section at the-end of the review. The symbols
which have the same meaning throughout the review have been listed under
the section where they were used for the first time.

II. Perturbation Methods

The perturbation method consists essentially of expanding the dependent
variable in a series of powers of a quantity known to be small. When this
small quantity is a parameter the method is known as parameter perturbation
and where it is a coordinate the method is termed a coordinate perturbation.
Taking this small quantity to be ¢, the solution of the differential equation
for € is the zeroth-order solution or the solution of the unperturbed problem.
When the expansion is substituted in the differential equation and the like
powers of € equated, we get a system of differential equations for the sub-
sequent order solutions. The assumed series is convergent in the asymptotic
sense [13] and if the above scheme succeeds, we speak of it as a regular
perturbation. This method has been used in a number of problems and has
produced very useful results.

In many problems, however, the ratio of successive terms in the solution
ceases to be small and the regular perturbation scheme therefore fails in
some region of the flow field. Thus it is not possible to obtain a uniformly
valid solution throughout the region of interest by a regular perturbation
scheme. Such problems are known as singular perturbation problems. We
propose to discuss some of the methods of dealing with such problems in
the context of heat {ransfer.

A. PLK MEeTHOD

Sometimes the regular perturbation fails because of the presence of a
singularity in the zeroth-order solution at a point or on a line in the region of
investigation. This singularity becomes progressively more and more severe
as the order of the solution increases. A technique for solving such problems
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by a perturbation method was presented by Lighthill [14], in which the
dependent variable v and the independent variable x are both expanded in
powers of the small quantity ¢. The method consists of expanding v and x
thus:

v = vo(x) + vy (P + va(x) + -, )

x =y + e, () + E€x,(0) + -, Q)

where y takes the place of the original independent variable x, vo(y) is simply
the zeroth-order solution of the regular perturbation method with x replacing
X, and x,(y), n = 1,2, 3, ... are so chosen that the higher approximations
shall be no more singular than the first. This remark will become clear in the
example discussed below. This method with various applications is presented
by Tsien [15] who called it the Poincaré-Lighthill-Kuo or, in short, the PLK
method because of the contribution of Poincaré [16] and Lighthill [14] to
this method and its extensive application by Kuo [17]. The method has also
been referred to as the method of strained coordinates (see Van Dyke [18],
Chapter 6), where many examples of the applications of this method in
aerodynamics are also presented. Lighthill {19] has applied the method to
conical shock waves in steady supersonic flows and Legras [20, 21] to
supersonic air foils. _

. The PLK method is also applicable to cases where the nonimiformity ‘of
the solutién arises in higher than the zeroth-order regular perturbation
solution. While studying the nonlinear problem of temperature distribution
in a melting slab with the melting face subject to a constant heat flux, the
farther end of the slab being insulated, Goodman and Shea [22], by an
integral method, derived the system of nonlinear coupled differential
equations

ds dw dv

L | 3
a0 it g T )

= — W, 4
3do - @
(1 ~s)? gg = -3, - )]

to be solved with the initial conditions
s(G) = 0, w(0) = 0, o(0) = —2a,/3, Cra ©

where s, v, v represent the nondimensional parameters related to the position
of the melting interface and the temperature in the melted and unmelted
parts of the slab, respectively, and «, is a parameter with natural restriction
0 < a, < 1. 1f a regular perturbation scheme is adopted for the solution of



RECENT MATHEMATICAL METHODS IN HEAT TRANSFER 5

the above system of equations, namely, if we assume an expansion of the
following type ’
f(ah H, v, 0) =f0(”’ v, 9) + ay fl(“a v, 0) + affz(ﬂ, v, 0) (7)

for each of the dependent variables s, w, v, it is found that the second-order
solution v,(f) contains terms of the type 8 exp(—36) and 6% exp (—36).
Thus the value of v obtained by this method for large @ achieves positive
values and for moderately large 0 these terms create humps in the solution.
Since it follows from Eq. (5) and the last of the initial conditions in Eq. (6)
that v has to be negative, the entire solution obtained by the regular perturb-
ation scheme is invalidated.

To obtain a uniformly valid solution, we make recourse to the PLK
method. Thus we define a new independent variable { and expand s, v, w and
the independent variable 6 in terms of the new independent variable { in
powers of the small parameter a. Thus we assume

0oy, 1, v, ) = {4+ a,0,(u,v,0) + af 0,(u,v, ) + - ®)

and expansions similar to Eq. (7) with 6 replaéed by the new independent
variable { for s, w, v. Thus the problem posed by Egs. (3)-(6) can be restated
as

ds dw dv do
LT 9
T .“d( ’udc #aldc O]
2q do
%.a%’ = (ay5% — vw) T (10)
(1—s)do_ _ db 1)
3 ag . d{

with initial conditions
s({=0=0, w{=0=0 ov((=0)-= —2911/3, (12)

provided 0,(() in Eq. (8) are so chosen that 8,(( = 0) = 0,/ > 1.
Introducing the expansion in Eq. (8) and similar expansions for s, w, v in
the system of equations (9)-(12), the zeroth-order solution is given as

so(0) = wo(0) = vo(§) =0, 13)

and the first-order solution as
510 = 2uC + @u/3exp (~30) — 1], (14)
wi()) =0, 15)

v,(8) = —%exp(-30). (16)
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The equations for the second-order approximation become

ds, . dw,  dv, de, ‘
2 +pu—2=2u-1, « 17
T V#dc ﬂdc #dC an
wy =0, )
dl)z dUl dﬂl
+ 30, =25 -3
dC 2 5y — dr Uy — aC

—2exp(~ 3c>{4u[c b+ dowp (=30] + ‘2"(} (19)

It is clear from the above that if the right-hand side of Eq. (19) is free from
terms of the type exp (—3() and { exp (—3{); v, would no Jonger dontain
the undesired terms { exp (—3¢) and {2 exp (—3¢). Thus 0, should be chosen
such that

"‘fg+4(¢—§)

or
0, = =2p(C* - 30). (20)

With this choice of 8, we get
s3 = —4p*(* — 30) — §u*[exp (=30) — exp (—60)], @1
v, = gulexp (=3() — exp (—60)]. (22)
The corresponding third-order approximation is given by

vy = s5u [ —9exp(—30) + 20exp (—60) — 1lexp(-=9)],  (23)

s3 = 280, — (u/v)s,” ~ pos, (24)

Wy = 5,2, | 25)
where the choice of 0, as dictated by this method is

0, = 4*{C ~ P’ + 3¢ + Plexp (=30~ 1] + 55}~ (26)

In this manner we have been able to obtain a uniformly valid solution for

all {. »
Ahuja and Kumar [23] have applied the same techmque for rendering
uniformly valid the solution of the problem of the temperature distribution
in a melting cylindrical tube, while the method has been used by Morris [24]
to obtain a uniformly valid solution of the laminar convective flow in a
heated vertical tube rotating about a parallel axis. Olstad [25] considered the
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problem of radiating flow near a stagnation point as a perturbation of the
case without radiation. It was found that near the wall the regular perturba-
tion procedure failed and therefore the PLK method was used for obtaining
a uniformly valid solution.

B. METHOD OF MATCHED ASYMPTOTIC EXPANSIONS

Where the highest derivative in a differential equation is multiplied by the
small parameter the PLK method fails. The basic difficulty in such problems
arises from the fact that when the order of the equation is reduced certain
boundary conditions cannot be satisfied. For such problems the works of
Lagerstrom and Cole {26], Lagerstrom [27), and Kaplun [28, 29] developed
the method of matched asymptotic expansions.

Let v(x, €) be the solution of the singular perturbation problem. The
usual asymptotic expansion in powers of €, ¢ — 0 is called the outer expansion
for x > 0 fixed. This expansion is valid in the interval y < x < | with y
independent of €. The expansion may also hold for y < x < | even if y
depends on ¢ and approaches zero as ¢ — 0, provided y'¢ - 0. Let the
outer expansion be denoted by v°. To obtain the inner expansion a stretching
transformation x = Ze¢ is introduced [30]. The asymptotic expansion
v Zc, ¢€), for ¢ — 0 while Z > 0 is fixed, is called the inner expansion denoted
by v'. This expansion is valid for 0 < (Z = x'c) < 4. The inner and outer
expansions thus have a common region of validity and in this region we can
write the inner expansion of the outer expansion (¢°)* and the outer expansion
of the inner expansion (v')°. The asymptotic matching principle (Van Dyke
[18], p. 64) states that:

The m-term inner expansion _ the n-term outer expansion

) = . . 27
(of the n-term outer expansion)  (of the m-term inner expansion) ’ @7

where m and n are any two integers. In practice m is usually chosen either
equal to n or n + 1. The unknown constants in ¢v° and v' are determined by
matching the two in the common region of validity with the help of the
above stated matching principle. Sometimes a composite expansion ¢ is
formed to obtain a solution uniformly valid throughout the interval
0 < x < . v° can be formed either according to the additive law

=0+ 0f = (%) (28a)
or the multiplicative law as detailed in [18, p. 94):
v = 0o (L) (28b)

A very instructive application of the method of matched asymptotic.
expansions has been made by Inger [31] in the analysis of near-equilibrium
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dissociating boundary layers. We describe briefly part of thlS work to
illustrate the method.

1. An Example

Consider the near equilibrium dissociating boundary layer flow of a
diatomic gas along an impervious, axisymmetric or two-dimensional body
which is either adiabatic or has a uniform surface temperature. Introducing
the variables

y
1= a7t | (olp dy @)
0 .
cC f peneurd dx, (30)
0
u=u,dfldg = u.f’, (31)

and assuming the Prandtl number and the Lewis number to be unity and
pp = const., we can write down the equations of momentum, atom con-
centration, and energy in the form

7+ f"f =0, . (Y

f— 55— - 2£f =T a - C, — Cyt), (33)
0H 0*H

It g éf——O (34)

The total enthalpy H is related to the static temperature ¢ and atom mass
fraction o by
H = ct + ahy + 3ui(f). (35)

It may be noted that T — 0 for chemically frozen flow and T — o for
complete equilibrium. The boundary conditions are ‘

f’(W) = 1’ a(ésw) = ae = Cl + C2te’ t(ésw) = te

(36)
H(¢,0) = H, = ¢t + achp + jul.
At the surface _ :
£(0) =f'(0) =0, (37
1(¢E,0) =1, =const. or OH(&0)/dy =0, (38)
H(0) = c,t, + hpa(£,0). (39)

For a perfectly catalytic wall we also have
a(é’o) = aEQ,w = Cl + CZIW' (49)
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Thus in Eq. (33) for T — oo(I;T - 0), all derivatives including the highest
order vanish and the problem is therefore a singular perturbation problem.
We may write Eqs. (33) and (34) in terms of the new dependent variables &,
G and the new parameter I as

= 2z w
s LT e P e (& - —’39—) ~ (Joo + alg) (@D)

oy on? o 1+D

2 o
AR ) (42
on  0n ¢

subject to the following boundary conditions for the catalytic wall:

a(&,00) =0 = G(£,0), 43)
a(£,0) = 0 = G(&,0). (44)

Noting that the temperature profile can be written as
WEN) = tego(n) + ¢, 'Ghy — hpe,'a, (45)

it follows from Eq. (42) that
G(&n) = 0. (46)
a. Outer Expansion. Consider Eq. (41) for near-equilibrium flow where I'

is very large. The outer expansion can therefore be assumed for
& — D(1 + D)™'G in the form

& —D(1 + D)"'G = ia,.,(r,)(re")'“. (47)
N=1

Substituting from Eq. (47) in Eq. (41), using Eq. (42) and collecting terms in
like powers of I', we determine the following equations governing the
perturbation functions:

X)) = fagq + %iq = %O (M/A]%, (48)
a0 = f@&) + (@) + 2Rf'%) (49)
() = faR-1) + (R-1)" + 2R(N — Df'&-,, (50

where Eq. (45) has been used to simplify the right-hand side of Eq. (48).
Although the expansion in Eq. (47) satisfies the outer boundary condition
Eq. (43) it cannot satisfy the inner boundary condition Eq. (44). We therefore
try to obtain the solution near the wall in a contracted variable Q.

b. Inner Expansion. From Eq. (41) it follows that the coefficient of the
highest order derivative on the left-hand side would not vanish for I' = o
if we use a new independent variable Q = I''/25. To obtain the inner



10 1. J. KuMArR

solution in terms of the new independent variable we first rewrite Eq. (41)
in terms of this variable. Thus we get

o%a  AQ* ! 2BO¥\ dx  2¢A4Q ! 5BQ*\ da
s Tarm\| C Arn)ag T TR\ arR)a

7

= &R [& _ chf’g) _ lliQD -1z a%io)] — apoOYT (51

subject to the wall boundary condition Eq. (44). Equation (51) is to be
solved subject to Eq. (44). Let us assume that

i= Y d(EOr ™. (52)
N=1

Substitution of the series Eq. (52) in Eq. (51) yields a sequence of linear
second-order differential equations governing the inner perturbation funct-
ions. Solving these equations we get-

%(5,0) = E, sinh (¢*? Q), (53)
43(£,0) = E, sinh (8% Q) — £7Rago(O)[1 — exp (=&¥2 Q)], (54)
a3(¢,0) = E5sinh ($*2 Q) (55)

where E,, E,, ..., E, are arbitrary constants to be determined by matching
the outer and the inner solutions.

c. Matching. From Eqs. (46)—(50) we have the outer solution for the atom
concentration

a°(n,8) = [ago(ONTEMIL/"(0)/A]* + O 2¢725). (56)

Rewriting in terms of the inner variable Q, expanding for large I', and using
the fact that f”(0) = 0, Eq. (56) becomes

a(Q,8) = ago(O)IEF) ™! + O(r2572F) (57)
From Egs. (52)-(55) the inner solution is
&(Q,8) = E,I~"%sinh (£*/2Q) + E,[~! sinh (£%/2Q)
o agq(O)[1 — exp (=&¥2 Q)IT'gF

+ E T ~*2%sinh (E72Q) + O(T'™?), (58)



