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PREFACE

o

This ® Volume contains “selected papers from the third
Uncertainty in Artificial Intelligence (AI) Workshop held July
10-12, 1987 at the University of Washington in Seattle,
Washington. It also contains several interesting papers not
presented at the workshop. Many of the workshop papers have
been expanded or modified to include updated results and
references to other papers in this volume.

Because representation and reasoning under uncertainty are
" 8till poorly enough understood that implementation choices and
tradeoffs are best understood in specific applications, most
of the papers in this volume address multiple issues in
uncertain reasoning. We have classified th& papers in this

volume, according ta their major focus, into one of four
categories: .

o Interpretation and comparison of uncertainty calculi

o Representation and computation in Bayesian Inference

o Structure and control for systems reasoning under
uncertainty

o Learning and explanation

The papers in this volume on interpreting and comparing

uncertainty calculi reflect significant progress in this area.
In contrasting papers from the first volume of this series to
those of the current volume, it is possible to note-a much
more ecumenical spirit in the interpretation and.comparison.
The tone of religious fervor about "competing calculi” evident
in the first volume has given way to reasoned comparisons on
such AI 1issues as representation,semantics, knowledge
acquisition, complexity, control, and explanation, as
coherence, and completeness. Most authors now agree that any
uncertainty calculus can probably "do it all" in some sort of
Turing sense, but admit each calculus has its own peculiar
advantages and disadvantages. :

The special attention to Bayesian techniques represents the
relative maturity of Bayesian methods relative to other
calculi, rather than a general consensus about the superiority
of Bayesian methods. This maturity results from over 200
years of research in probability and is evidenced by the
existence of a well developed decision theory. Because of
this maturity, probabilities are often. the choice of
application developers, which in turn results in a large
number of papers on Bayesian techniques.
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Structure and control are a major topic in uncertain reasoning
for the same reasons that they are in any AI system: the
process of uncertain reasoning is simply too complex to
compute everything. For the same reasons that a chess playing
program cannot examine all possible moves, an uncertain

reasoning system cannot examine every facet of every possible
conclusion.

'Learning and explanation are equally important and probably
even more difficult in uncertain reasoning systems than they
are in any other AI system. An uncertain reasoning system
must learn not only the facts that must also be learned by
other AI systems, but also must learn the uncertainty
associated with these facts. Because of the uncertainties
involved in such systems, their actions, iriferences,decisions
and recommendations are even harder to understand than in
other AI systems. This makes explanation even more critical.

It is clear from the papers presented here and in the previous
volumes of this series that there are still many fundamental
open issues in the area of uncertain reasoning. It is our
hope that this collection of paper§ will provide motivation
and assistance to those who wishto explore these open issues
in an area whose recognized ipportance continues to grow.
Laveen N. Kanal ‘John F. Lemmer . . ‘Tod S. Levitt
College Park, MD : Rome, N.Y. Mt. View, CA



CONTRIBUTORS

Tejwansh S. Anand, Philips Laboratories,
Briarcliff Hanor, N.Y. 10520 :

Leonard J. Bertrand, Strategic Decisions Group,
Menlo Park, CA 94025

Thomas O. Binford, Stanford University,
stanford, VA 94305

Gautam Biswas, Vanderbilt University,
Nashville, TN 37235

Piero P./ﬁoni-sone, GE Corporate Research & Devalopment,
Schenectady, N.Y. 12301

Lashon B. Booker, Naval Research lLaboratory,
Washington, DC 20375

Wray L. Buntine, S.0.C.S. - U.T.S.,
Australia, 2007

Richard A. Caruana, Philips lLaboratories,
Briarcliff Manor, N.Y. 10520

. Homer L. Chin, Stanforad University,
stantotd, CA 94305

Paul COhen, ﬁniversity of Massachusetts,
Anherst, MA 01003

Grdbory F. Cooper, Stanford University,
‘Btanford, CA 94305

Bruce D'A-bfosio, Department of Computdr Science,
Oregon State University

Norman Dalkey, UCLA Computer Science Departnent,
Los Angeles, CA 90024 T

David M. Eddy, Duke University,
pnthan, N.C. 27706

Christopher Elsaesser, The Mitre Corporation,
Mclean, VA 22102 ’

Greg Hager, University of Pennsylvania, -
Philadelphia, PA 15104



xii Contributors

Vic Hasselblad, Duke University,
Durham, N.C. 27706

David Heckerman, Stanford Medical Center,
Menlo Park, CA 94025

Gavin Hemphill, Defense Research Establishment Atlantic,
Dartmouth, N.S., Canada B2Y327

Max Henrion, Carnegie Mellon University,
Pittsburgh, PA 15217

Eric J. Horvitz, Stanford University,
Stanford, CA 94305

Naveen Hota, JAYCOR,
" Vienna, VA 22180

Holly Jimison, Stanford Medical Center,
Stanford, CA 94305

Henry E. Kyburg, Jr., University of Rochestef,
Rochester, N.Y. 14627

Tod S. Levitt, Advanced Decision Systenms,
Mountain View, CA 94305

Wallace B. Mann, Stanford University,
Stanford, CA 94305

Mary McLeish, University of Guelph,
Guelphi, Ontario, Canada

Max Mintz, University of Pennsylvania,
Philadelphia, PA 19104

Eric M. Neufeld, University of New Brunswick,
Fredericton, N.B. E3B 5A3 .

Judea Pearl, UCLA Computer Science Department,
Los Angeles, CA 90024

Bruce M. Perrin, McDonnell Douglas Astronautics Co.,
Sst. Louis, MO 63166 '

David Poole, University of British Columbia,
Vancouver, Canada T6G 2E1

George Rebane, UCLA Computer Science Department,
Los Angeles, CA 90024

Ross D. shacﬁter, Stanford University,
Stanford, CA 9430S

Glen Shafer, University of Kansas,
Lawrence, Kansas 66045



Contributors xiii

Thomas B. Slack, PAR Government Systems Corporation,
New Hartford, N.Y. 13413

David F. Spiegelhalter, MRC Biostatistics Unit,
Cambridge CB2 2BW

Spenser Star, Carnegie Mellon University,
Pittsburgh, PA 15213

David S. Vaughn, McDonnell Douglas Research Laboratory,
St. Louis, MO 63166

Ben P. Wise, Thayer School of Engineering, Dartmouth College,
Hanover, N.H. 03755 ’

Robert Wolpert, Duke University,
Durham, N.C. 27706

Nancy C. Wood, GE Corporate Research & Development,
Schenectady, N.Y. 12301

Lei Xu, Tsinghua University,
Beijing, China

Robert M. Yadrick, McDonnell Douglas Research Laboratory,
St. Louis, MO 63166

John Yen, USC/Information Science Institute,
Marina del Ray, CA 90292



CONTENTS

reface

contributors

I. INTERPRETATION AND COMPARISON

An Algorithm for Cbmputing Probabilistic Propositions
G.F. Cooper,

Higher Order Probabilities
H.E. Kyburg, Jr.

Nilsson's Probabilistiic Entailment Extended to
Dempster-Shafer Theory o~
M. McLeish

Towards Solving the Multiple Extension Prodblem:
Combining Defaults and Probability
E. Neufeld-and D. Poole

Satisfaction of Assumptions is a Weak Predictor of
Performance .
B.P. Wise

Evaluation of Uncertain Inference Models III:
The Role of Tuning
B.P. Wise, B.M. Perrin, D.S. Vaughan, and R.M. Yadrick

Can Evidence be Combined in the Dempster-Shafer Theoryj

J. Yen

II. REPRESENTATION ‘AND COMPUTATION IN
BAYESIAN INFERENCE ¢

Bayeéian Inference in Moéel—Based Machine Vision »
.T.0. Binford, T.S. Levitt, and W.B. Mann

Computing Belief Commitments Using Tensor Products
L.B. Booker, N. Hota, and G. Hemphill-

Decision Tree Induction Systems: A Bayesian Analysis

". W. Buntine

Bayesian Belief Network Inference Using Simulation
§.L. Chin and G.F. Cooper e

Vi

xi

15
23
35
45

55
63

73

109-

129 -



viii Contents

A Bayesian Perspective on Confidence
D. Heckerman and H. Jimison

Some Practical Issues in Constructing Belief Networks
M. Henrion

The Recovery of Causal Poly-Trees from Statistical
Data
G. Rebane and J. Pearl

A Heuristic Bayesian Approach to Knowledge Acquisition:
Application to the Analysis of Tissue-Type
Plasminogen Activator

R.D. Shachter, D.M. Eddy, V. Hasselblad, and
R. Wolpert:

Advantages and a Limitation of Using LEG Nets in a
Real Time Problem
T.B. Slack

A Unified Approach to Imprecision and Sensitivity
of Beliefs in Expert Systems
D.J. Spiegelhalter

Structuring Causal Tree Models with Continuocus
Variables

L. ¥Xu and J. Pearl

I1XI. STRUCTURE AND CONTROL

Using the Dempster-Shafer Scheme in a Mixed-Initiative
Expert System Shell
G. Biswas and T.S. Anand

T-Norm Based Reasoning in Situation Assessment
Applications

P.P. Bonissone and N.C. Wood

Steps Towards Programs that Manage Uncertainty
P.R. Cohen

A Hybrid Approach to Reasoning Under Uncertainty
B. D'Ambrosio

Estimation Procedures for Robust Sensor Control
G. Hager and M. Mintz

Reasoning about Beliefs and Actions Under
Computational Resource Constraints
E.J. Horvitz

Efficient Inference on Generalized Fault Diagrams
R.D. Shachter and L J. Bertrand

Implementing Evidential Reasoning in Expert Systems
J. Yen

14

161

175

183

191

199

209

223

241

257

267

285

301

325

333



Contents

IV. LEARNING AND EXPLANATION

The Automatic Traininé of Rule Bases that Use

Numerical Uncertainty Representations
R.A. Caruana

Modifiable Combining Functions
P.R. Cohen, G. Shafer, and P.P. Shenoy

The Inductive Logic of Information Systems
N.C. Dalkey

Explanation of Probabilistic Inference
C. Elsaesser

Theory-Based Inductive Learning: An Integration of
Symbolic and Quantitative Methods
S. Star

347

357

375

387

401



I

INTERPRETATION AND
COMPARISON






Uncertainty in Artificial Intelligence 3 3
L.N. Kanal, T.S. Levitt, and J.F. Lemmer (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1989

AN ALGORITHM FOR COMPUTING PROBABILISTIC
PROPOSITIONS

Gregory F. Cooper

Medical Computer Science Group
Medical School Office Building
Stanford University

Stanford, California 94305-5479

A method for computing probabilistic propositions is presented. It
assumes the availability of a single external routine for computing
the probability of one instantiated variable®, given a conjunction of
other instantiated variables. In particular, the method -allows belief
network algorithms to calculate general probabilistic propositions
over nodes in the network. Although in the worst case the time
complexity of the method is exponential in the size of a query, it is
polynomial in the size of a. number of common types of queries.

1. ’ Introduction

This paper presents an algorithm for computing the .probability of a
propositional logic sentence in the context of a set of known probabilities.
Probability inference algorithms have typically been developed to
calculate P'(Sx | S2° ), where S; is either a single instantiated variable or a
conjunction of instantiated variables, and S is a conjunction of instantiated
variables [1, 2, 3, 4, 5]. When S; is a single instantiated variable, we call
these single variable (SV) algorithms.

We will extend probability queries to the case where S; and Sy are well-
formed formulas in propositional logic (propositions). Thus, it will be
possible to apply disjunction, conjunction, and negation to variables in both
the conditioning and the conditioned part of a probability .query.

* The term instantiated variable is used to denotc a variable with a known, assigned
value,
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The Propositional Probability Query (PPQ) algorithm _fof performing these
type calculations is a simple procedure based on cills to an SV algorithm,
Thus, implementations of SV algorithms, sueh belief network algorithms (3,
"4, 5, 6], can be easily augmented to answer more general proposmonal
probability queries. Furthermore, PPQ can ' usually answer queries much
more efficiently than a brute-force technique that explicitly sums over the
entire joint probability space of the model variables.

PPQ is a specialization of general probabilistic logic inference algo\fit;lms .
(7]. It handles only propositional logic rather than first order predicate
logic. PPQ also assumes that there is “sufficient obabilistic information for
an SV algorithm to compute 2 unique (point) probability, rather than an
upper and lower bound (1/e ., interval) probablluy

2. The Principal Steps in the Algorithm

There are four main steps underlying PPQ, as shown below.* None of the
steps assumes that variables are binary. Thus, PPQ can answer, queries that
centain  multi-valued variables.

Step 1. Convert a conditional query into two niarginal queries,
P(S1 182 ) can be expressed as P(S; A S2 )/P(Sz ). Therefore, the task of
computing conditional propositional- probability queries is readily
decomposed into computing two marginal propositional probabilities.

Step 2. Eliminate disjunctions.

The next step is to transform a marginal propositional probablhty P(S) into
a form P(S') in which §' contains only conjunctions and negations. That is,
disjunctions are transformed into equivalent expressions .that contain only
conjunctions and negations. This can be done by successive applications: of

de Morgan's law, namely, XivXpveevX, = X‘szA...AXn.

.lp all four steps we use- the symbol A to represent conjunction, V 1o represent
disjunction, and an overbar to represent logical negation.
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Step 3. Eliminate negations.

In the third step, we simplify S' to a conjunction of instantiated variables
" by recursively removing all negation operators in S'. For example, suppose
S$' = 8'1 A8, A 83, where S'y, S'2, and S'3 are propositions. In order to

SImphfy this expression, the negation operator spanning S't and S'2 can be
removed as follows:

P(S)=P(S'; A8, A S')
=P(S', AS'215'3) P(S'5)
=(1-P(8'1 A 8'218'3)) P(S'y)

P(S'; AS',A8"3) ,
=(1-—1222293 p(g
( PGSy ) P(§'5)

=P(S') - 1>(s."l NSy ASS)

The terms P(S'3) and P(S’y A S'2 A $'3). in the last line above are the only
terms which must be computed; the derivation merely clarifies how the
final line was obtained. Thus, the key to Step 3 is the use of a simple
clementary probability relation, namely, P(XAY)=P(Y)- P(X A Y), where X
and Y are arbm'ary propositions. (In the special case that Y = T, it follows
that PXAN=PX1=1 - P(X).) In the current example, recursive
appllcanon of this simplification rule to P(S'3s) and P(S'1 A §'2 A §'3 )
ultimately yields probabilities with terms that consist only of a conjunction
of instantiated variables. We can then apply Step 4 to determine the value
of each of these probability terms and thus the value of P(S').

Step 4. Compute joint probabilities.

If 8’ conmsists only of a conjunction of n instantiated variables of the form
XiA XA . A Xp, then by application of the chain-rule of conditional
probabilities we know that:

P(S)=PX; 1 X3 A AXp) P(Xp 1 X3 A AXp) .o P(Xp. 1 | X,) P(X,)

Note that each of these terms can be computed by an SV algorithm,
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3. An Example

As an example, consider a query to calculate P(X;v X,|X;vX,). For
simplicity, we will assume these are binary variables. The steps PPQ uses
to answer this query are shown in Figure 1. Because the query variables in
the example are all binary, it is acceptable to stop applying Step 3 when
the only negation operators that remain in an expression are those that
scope over single variables. However, for the more general case, we would
apply Step 3 until no negation operators remain within any expression.
Notice that the expression P(_X—3)X4) P(X,) occurs twice in Figure 1. This
demonstrates that caching some of the subcalculations may improve the
efficiency of the algorithm. Caching would be most_efficient if it occurred
among expressions higher in the tree, in order to prune redundant
calculations before they terminate at the leaf-node stage. For example, by
storing the value of P(Y3AX4) after it is first calculated, we can elimipate
the need to calculate this probability a second time, as is done in Figure 1.

4. Time Complexity Analysis
4.1, Worst Case Analysis

The worst-case computational time complexity of PPQ is O(m 22m g(n)),
where m is the number of variable references in a query, n is the total
number of variables in the knowledge base, and g(n) is the worst-case
time complexity for a givem SV algorithm to compute an SV probability
using a knowledge base of size n. In the worst-case, the SV. algorithm
calculation, as reflected in g(n), can' be quite expensive. For example, for
belief networks, this inference problem is known to be NP-hard [8]. On the
other hand, there are SV algorithms with an O(n) time complexity for
special belief network topologies, such as networks with only one pathway
between any two nodes [5]. However, the main issue we consider here in
the analysis of PPQ is the time complexity incurred due to calculations
other than those of the SV algorithm. This complexity is reflected in the
term m 22®, Therefore, the focus of our complexity analysis will be on the
derivation of O(m 22M) as a worst-case result for the number of calls to an
SV algorithm, for a query of size m.
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P(x,'vi,ax_,,vij)

P((X, v X)) A (X3 v X)) | P(X3 v Xy

Step 2 Step 2

P(X, A X; A X3 A X P(X; A X,

1-P(X; AX,)

Step 4

Step 3

S P(X; A X,) B A - IK AT AT AX)  POGIX)PX
Siep 4 Siep4 '
Step 4

PO 1X) PKY) B 1% PEy)

T, 1% a5 A X MG 1T A X9 P 1X) P(XD

Figure 1
Application of the four steps in PPQ to decompose a
query at the root node into queries at the leaf nodes that
can be computed using an SV algorithm.



