## ESSENTIALS OF THE DYNAMIC UNIVERSE

AN INTRODUCTION TO ASTRONOMY

THEODORE P. SNOW







## Essentials of the Dynamic Universe

## AN INTRODUCTION TO ASTRONOMY

THIRD EDITION

Theodore P. Snow University of Colorado at Boulder

West Publishing Company

Saint Paul ● New York ● Los Angeles ● San Francisco

Art: Alexander Teshin Associates, Inc. Composition: Carlisle Communications

Copy editing: Carol Danielson

Cover Design: Janet Bollow Associates

Cover image: The effect of methane on the appearance of

Neptune (Jet Propulsion Laboratory, NASA)

#### Contents photo credits:

vii Sunset behind Kitt Peak (National Optical Astronomy Observatories); viii A Space Shuttle view of moonrise (NASA); ix Uranus as it might appear from Miranda (JPL/NASA); x A filtered image showing solar active regions (National Optical Astronomy Observatories); xi A panorama of the Milky Way, showing Halley's Comet (National Optical Astronomy Observatories); xii A portion of a rich cluster of galaxies (\* 1984 ROF/AAT Board); xiii The Hubble Space Telescope about to be placed in orbit by the Shuttle (NASA)

COPYRIGHT ©1984, 1987 By WEST PUBLISHING COMPANY

COPYRIGHT ©1990

By WEST PUBLISHING

COMPANY

50 W. Kellogg Boulevard

P.O. Box 64526

St. Paul, MN 55164-1003

All rights reserved

Printed in the United States of America

97 96 95 94 93 92 91 90

876543210

#### Library of Congress Cataloging-in-Publication Data

Snow, Theodore P. (Theodore Peck)

Essentials of the dynamic universe: an introduction to astronomy

/Theodore P. Snow.—3rd ed.

Includes bibliographies and index.

ISBN 0-314-57871-4

1. Astronomy. I. Title.

QB43.2.S663

520-dc20

1990

89-35055

CIP

## Preface

To study astronomy is, in a sense, the most human thing we can do. What distinguishes us from lower creatures, if not our curiosity, our compulsion to explore and discover? And what exemplifies this compulsion better than the study of the universe?

We probe the heavens (and the Earth) by all possible means, and we do it for no reason other than to learn whatever there is to be known. Astronomy has produced many useful by-products, of course, and could be (and often is) justified solely on that basis. However, that is not the real reason for astronomy to exist.

This textbook represents an attempt by an astronomer to share both the knowledge and the intellectual gratification of our science. There is considerable beauty in the universe for the eye and mind to behold. Just as it is visually stimulating to gaze at a great glowing nebula or a colorful moon, it is pleasing to the intellect to grasp a new understanding of one of the grand themes of the cosmos. It is hoped that the reader of this book will gain by doing both.

This textbook is intended for the student who has not chosen science as his or her major area of study, but who needs an appreciation of science as a vital aspect of preparation for a career. It is as important for such a student to gain some perspective on the general nature of science as it is to learn a great deal of specific information about a particular discipline in the sciences. For that reason, this text stresses the philosophy and outlook of the scientist as well as the knowledge we have gathered about the physical universe we live in.

It is probably as important for the student to understand how we know what we know as it is to understand what we know. In this era of instantaneous communication and universal access to information, we need more than ever to be able to discriminate among competing hypotheses, to be able to judge the reasonableness of ideas that are advanced. This text in astronomy is written with the underlying theme that to know the workings of science is one of the most important tools we have for meeting the challenges of our technological society.

This edition of Essentials of the Dynamic Universe is, like its predecessors, an abridged version of the larger Dynamic Universe. As in the earlier edition, the emphasis at all times is on how we learn about the cosmos—on the nature of scientific reason and the methods of scientific progress. The text presents a full overview of our current state of knowledge, while at the same time preparing the student for the changes in our understanding that will surely follow.

This edition retains the features introduced in the previous two editions, such as "Astronomical Insights," "Guest Editorials," and the "Progress of Ideas" prologues to each chapter. These features are designed to enhance student comprehension and enjoyment, by adding historical perspective or clarifying difficult concepts, by presenting the personal viewpoints of leading scientists in the field, and by illustrating the rich variety of ways in which scientific discoveries are made. In addition, the questions at the end of each chapter are entirely new, and the reading lists have been updated to include articles published as recently as the late summer of 1989.

In addition to the increased emphasis on the nature of science, the new edition has been updated to include the most recent discoveries. This means, for example, that major changes have been made in the chapter on the outer planets, in view of the recent successful Voyager 2 flyby of Neptune, and that substantial rewriting has been done in every chapter. The most extensive changes are to be found in the sections on stellar evolution and in the chapter on cosmology, a field in which new theories with vast implications have been developed since the previous edition was prepared. The launch of the Hubble Space Telescope is expected early in the lifetime of this edition, and considerable emphasis has been placed on explaining the many ways in which this space observatory may change our view of the universe.

The esthetic appeal of astronomy continues to be immeasurably enhanced by the four-color format of the book; this allows proper illustrations to be interspersed throughout the text rather than being relegated to a few color-plate sections. This allows the student to appreciate not only the beauty, but also the relevence, of astronomical photographs and diagrams, without the need to locate plates in a remote section of the book. Many of the drawings have been updated to use color or to clarify concepts.

The arrangement of the text remains traditional, with an introductory section on the background of astronomy, both in history and in basic physics; a section on the solar system, dealing with the planets as individuals before discussing interplanetary bodies and then the formation of the entire system; one on stars and their lives and deaths; a section on the structure and evolution of our galaxy; a set of chapters on extragalactic astronomy and the universe as a whole; and a final, brief section on the possibilities that life may exist elsewhere. At the beginning of each of these sections is an introduction that leads the student into the material. and at the end of each is a guest essay in which a leading scientist in the field shares his or her thoughts on current problems or controversies and future directions for research.

The book is designed so that the sequence of sections may be easily changed. For example, if it is desired to teach the sections on stars, the galaxy, and the universe before discussing the solar system, one need only skip directly from Chapter 4 to Chapter 13 and then go on to the end before returning to Chapter 5, where the solar system studies begin. The chapter on the Sun is located at the beginning of the section on stars, so that skipping or delaying the solar system discussion will not prevent the student from learning about the nearest and best-understood star. The summary chapter on the solar system (Chapter 12) includes enough information on the Sun that the discussion of the system as a whole and its formation is complete as it stands.

As already mentioned, the well-received Astronomical Insights have been carried over into this edition, with a substantial number of new ones added. These inserts, placed within the chapters, describe people, discoveries, or current controversies or new hypotheses related to the subject matter of the text. They are meant to enhance the students' enjoyment of the material, or add understanding of complex topics, but above all they are designed to increase understanding of the scientific process.

The *Progress of Ideas* articles at the beginnings of the chapters are intended to provide the student some insight into the process of discovery. Most consist of

historical anecdotes used to illustrate how science makes progress by finding new explanations and then testing them in the arena of observation and experiment. Most have been rewritten for this edition.

Supplemental materials for this text include an updated version of the *Study Guide*, now authored by Jeffrey Bennett along with Catharine D. Garmany and the undersigned (all of us from the University of Colorado); and a revised edition of the *Instructor's Manual* by Stephen J. Shawl (University of Kansas). The *Study Guide*, intended to help the student get maximum benefit from the text, contains brief chapter summaries, lists of key words and phrases, and self-tests. In addition to the *Study Guide* and the *Instructor's Manual*, a slide set and overhead transparencies are available to qualified adopters, showing a number of useful diagrams, illustrations, and photographs from the text.

At every step during the preparation of this text, vital assistance was provided by a number of people, whose help is acknowledged with gratitude (with apologies to anyone inadvertantly omitted). The most important guidance and support was provided by my wife, Connie; and by the West Publishing Company editors, Denise Simon, who has provided overall guidance for the project, and Stacy Lenzen, who has been responsible for production.

Among my colleagues at the University of Colorado and elsewhere, several have helped by scrutinizing sections of the text, providing new figures, or updating data for tables and appendices. Particularly helpful in the preparation of this edition were Alan Stern, J. M. Shull, John Stocke, Larry Esposito, Charles Hord, and Karen Simmons (all of the University of Colorado), Phil Marcus (University of California, Berkeley), Joseph Jones (Canada France Hawaii Telescope), and J. A. Tyson (Bell Laboratories). I am especially indebted to Kathy Hoyt of the U.S. Geological Survey, for help in providing the most recent planetary images and maps; and to Kelly Aggen of JPL, who made it possible for me to obtain the new *Voyager* images of Neptune in time for inclusion in the book.

A special debt is owed to those who wrote the guest editorials, for adding their thoughts and visions to my own less elegant discussions. Much of the excitement of astronomy lies in the pursuit of new revelations beyond the scope of current knowledge, and the essays contributed by leaders in this pursuit help immeasurably to inpart this excitement to the reader. Those contributing new essays to this edition are Roger Culver (Colorado

State University), Henny Lamers (University of Utrecht, the Netherlands), Richard Larson (Yale University), and Robert Bakker (University of Colorado).

I am also very grateful to the many reviewers of the text, who provided comments and suggestions based on their own knowledge of astronomy and their experience in teaching it. The reviewers for this edition were:

1.7

Bill T. Adams, Jr. Baylor University, Texas

Carol Ambruster Villanova University, Pennsylvania

Eugene Corbett Mission College, California

John H. Evans University of Wisconsin, Oshkosh

Paul F. Goldsmith University of Massachusetts John Kenny Bradley University, Illinois

Gerald W. Meisner University of North Carolina, Greensboro

Craig Sarazin
University of Virginia

William R. Wharton Wheaton College, Illinois

Jonathan Wolf
Queens College, New York

For all of these people, and to the students whose responses to my teaching philosophies have also helped to shape this book, I am grateful. With their continued input, I trust that this book will continue to evolve, as does our understanding of the dynamic universe.

Theodore P. Snow

## Contents

Preface xv

## SECTION ONE THE NIGHTTIME SKY AND THE TOOLS OF ASTRONOMY 1

## Chapter 1 The Essence of Astronomy 3

PROGRESS OF IDEAS: Philosophy of Science 4
What is Astronomy? 5
A Typical Night Outdoors 6
A View from Earth 8

ASTRONOMICAL INSIGHT 1.1: WHAT IS AN ASTRONOMER? 11

From the Earth to the Universe: The Scale of Things 12

ASTRONOMICAL INSIGHT 1.2: ASTRONOMY AND

ASTROLOGY 13

Perspective 15 Summary 15 Review Questions 16 Additional Readings 16

## Chapter 2 Cycles and Seasons: Motions in the Sky 17

PROGRESS OF IDEAS: Geocentrism in Ancient Times 18 Rhythms of the Cosmos 19 Daily Motions 19

ASTRONOMICAL INSIGHT 2.1: KEEPING IN TOUCH WITH THE STARS 20

Astronomical Coordinate Systems 22 Annual Motions: The Seasons 24 Calendars 26

ASTRONOMICAL INSIGHT 2.2: CELESTIAL NAVIGATION 28

The Moon and Its Phases 29 Eclipses of the Sun and Moon 31 Planetary Motions 33 Historical Developments 36

The Earliest Astronomy 36

Plato and Aristotle 37

The Later Greeks: Sophisticated Cosmologies 39

ASTRONOMICAL INSIGHT 2.3: THE MYTHOLOGY OF THE CONSTELLATIONS 41

Perspective 42 Summary 43 Review Questions 43 Additional Readings 44

## Chapter 3 The Renaissance and the Laws of Motion 45

PROGRESS OF IDEAS: Communicating Science 46
Copernicus: The Heliocentric View Revisited 47
Tycho Brahe: Advanced Observations 48
Johannes Kepler and the Laws of Planetary Motion 49
Galileo, Experimental Physics, and the Telescope 52
Isaac Newton 55



### ASTRONOMICAL INSIGHT 3.1: AN EXCERPT FROM DIALOGUE ON THE TWO CHIEF WORLD SYSTEMS 56

The Laws of Motion 57 Gravitation and Weight 58

#### ASTRONOMICAL INSIGHT 3.2: THE FORCES OF NATURE 62

Energy, Angular Momentum and Orbits: Kepler's Laws Revisited 63 Tidal Forces 65

#### ASTRONOMICAL INSIGHT 3.3: RELATIVITY 66

Perspective 67 Summary 68 Review Questions 68 Additional Readings 69

## Chapter 4 Messages from the Cosmos: Light and Telescopes 71

PROGRESS OF IDEAS: Technology and Discovery 72
The Electromagnetic Spectrum 73
Continuous Radiation 76

## ASTRONOMICAL INSIGHT 4.1: THE PERCEPTION OF LIGHT 77

The Atom and Spectral Lines 79
Deriving Information from Spectra 82
Telescopes: Tools for Collecting Light 85
The Need for Telescopes 85
Principles of Telescope Design 86
Major Observatories for all Wavelengths 92



### ASTRONOMICAL INSIGHT 4.2: A NIGHT AT THE ORSERVATORY 94

The Next Generation 96
Perspective 98
Summary 99
Review Questions 99
Additional Readings 100
GUEST EDITORIAL: ASTRONOMY ON THE FRINGE,
BY ROGER CULVER 101

## SECTION TWO THE SOLAR SYSTEM 105

## Chapter 5 The Earth and Its Companion 107

PROGRESS OF IDEAS: Continental Drift 108 The Earth's Atmosphere 109

ASTRONOMICAL INSIGHT 5.1: TECHNOLOGY AND THE ATMOSPHERE 110

The Earth's Interior and Magnetic Field 113 A Crust in Action 116

#### ASTRONOMICAL INSIGHT 5.2: THE AGES OF ROCK 120

Exploring the Moon 120
A Battle-Worn Surface and a Dormant Interior 122
ASTRONOMICAL INSIGHT 5.3: LUNAR CARTOGRAPHY 124

The Development of the Earth-Moon System 128

Formation of the Earth and Its Atmosphere 128

Origin of the Moon 129

History of the Moon 131

Perspective 131

Summary 131

Review Questions 132

Additional Readings 132

#### Chapter 6

WITH RADAR 142

The Inferior Planets: Venus and Mercury 135

PROGRESS OF IDEAS: Velikovsky and
Peer Review 136
Probing Venus: Exploration and General Properties 137
The Atmosphere 140
ASTRONOMICAL INSIGHT 64: MAPPING VENUS

The Surface and Interior 143
Earth and Venus: So Near and Yet So Different 146
The Mysteries of Mercury 148
Orbital Eccentricity and Rotational Resonance 149
A Moonlike Exterior and a Dense Interior 150

Perspective 153 Summary 153 Review Questions 154 Additional Readings 154

## Chapter 7 Mars and the Search for Life 155

PROGRESS OF IDEAS: Percival Lowell and
Martian Canals 156
Observations and General Properties 157
The Martian Atmosphere and Seasonal Variations 160
ASTRONOMICAL INSIGHT 7.1: METEORITES FROM
MARS? 163

Water, Tectonics, and the Martian Surface 164
Surface Rocks and the Interior of Mars 168
Prospecting for Life: The *Viking* Experiments 169
ASTRONOMICAL INSIGHT 7.2: PRIMORDIAL LIFE
ON MARS? 474

The Martian Moons 172
Perspective 173
Summary 173
Review Questions 173
Additional Readings 174

## Chapter 8 Jupiter: Giant among Giants 175

PROGRESS OF IDEAS: Planetary Encounters and Real-Time Science 176
Observation and Exploration 177

ASTRONOMICAL INSIGHT 8.1: THE MANY ROLES OF JUPITER'S GRAVITY 180

Atmosphere in Motion 181
Internal Structure and Excess Radiation 183
The Magnetic Field and Radiation Belts 185
ASTRONOMICAL INSIGHT 8.2: THE GALILEO MISSION TO JUPITER 186

The Satellites of Jupiter 189
Tidal Forces and the Volcanoes on Io 194
Perspective 196
Summary 196
Review Questions 196
Additional Readings 197

#### Chapter 9 Saturn and Its Attendants 199

PROGRESS OF IDEAS: The Rings of Saturn 200 General Properties 201 Atmosphere and Interior: Jupiter's Little Brother? 203 The Satellites of Saturn 206
The Rings 211
ASTRONOMICAL INSIGHT 9.1: RESOLVING THE RINGS 215

Perspective 217 Summary 218 Review Questions 218 Additional Readings 218

#### Chapter 10 The Outer Planets 219

PROGRESS OF IDEAS: Discoveries of the
Outer Planets 220
Uranus 221
Discovery and Observations from Earth 221
Atmosphere and Interior 222
Satellites and Rings 225
Neptune 230
The Discovery: A Victory for Newton 231
The Voyager Encounter and the Properties of Neptune 231
Neptune's Moons and Rings 234
Pluto 238
Planetary Misfit 239
ASTRONOMICAL INSIGHT 10.1: THE SEARCH FOR PLANET X 240
Parametrical 242

Perspective 242 Summary 242 Review Questions 243 Additional Readings 243



#### Chapter 11 Space Debris 245

PROGRESS OF IDEAS: Bode's Law 246
The Minor Planets 247
Kirkwood's Gaps: Orbital Resonances Revisited 249
The Origin of the Asteroids 250
Comets: Fateful Messengers 250
Halley, Oort, and Cometary Orbits 251
The Anatomy of a Comet 254

ASTRONOMICAL INSIGHT 11.1: COMETS AND WATER 259

Meteors and Meteorites 260

Primordial Leftovers 260

ASTRONOMICAL INSIGHT 11.2: THE IMPACT OF IMPACTS 262

Dead Comets and Fractured Asteroids 262

Microscopic Particles: Interplanetary Dust and the
Interstallar Wind 265

Perspective 268

Summary 268

Review Questions 268

Additional Readings 269

#### Chapter 12: Adding It Up: Formation of the Solar System 271

PROGRESS OF IDEAS: Understanding the Sun's Spin 272
A Summary of The Evidence 273



Catastrophe or Evolution? 275 A Modern Scenario 278

ASTRONOMICAL INSIGHT 12.1: THE EXPLOSIVE HISTORY OF SOLAR SYSTEM ELEMENTS 280
ASTRONOMICAL INSIGHT 12.2: CATASTROPHE REVISITED: VIOLENT ORIGINS OF THE PLANETS 282

Are There Other Solar Systems? 285
Perspective 287
Summary 287
Review Questions 287
Additional Readings 288

GUEST EDITORIAL: THE HUBBLE SPACE TELESCOPE AND SO-LAR SYSTEM EXPLORATION, BY JOHN C. BRANDT 289

## SECTION THREE THE STARS 293

#### Chapter 13 The Sun 295

PROGRESS OF IDEAS: The Solar-Stellar
Connection 296
Basic Properties and Internal Structure 297
ASTRONOMICAL INSIGHT 13.1: MEASURING THE SUN'S
PULSE 299

Nuclear Reactions 301
Structure of the Solar Atmosphere 302
The Solar Wind 307
Sunspots, Solar Activity and the Magnetic Field 310
ASTRONOMICAL INSIGHT 13.2: THE SOLAR NEUTRINO
MYSTERY 312

Perspective 317 Summary 318 Review Questions 319 Additional Readings 319

## Chapter 14 Observations and Basic Properties of Stars 321

PROGRESS OF IDEAS: Stellar Magnitudes 322
Three Ways of Looking at It: Positions, Magnitudes, and Spectra 323
Positional Astronomy 323
ASTRONOMICAL INSIGHT 14.1: STAR NAMES AND CAJALOGS 324

Stellar Brightness 325 Measurements of Stellar Spectra 327 Binary Stars 331 Fundamental Stellar Properties 333

Absolute Magnitude and Stellar Luminosities 334

ASTRONOMICAL INSIGHT 14.2: STELLAR SPECTROSCOPY AND THE HARVARD WOMAN 336

Stellar Surface Temperatures 336

The Hertzsprung-Russell Diagram and a New Distance Technique 338

Using the H-R Diagram to Find Distances 340

Stellar Diameters 341

Binary Stars and Stellar Masses 341

Other Properties 342

Perspective 344

Summary 344 Review Questions 345

Additional Readings 345

Chapter 15

Stellar Structure: What Makes a Star Run? 347

PROGRESS OF IDEAS: Stellar Models and Reality 348

What Is a Star Anyway? 349

Nuclear Reactions and Energy Transport 351

Stellar Life Expectancies 353

Heavy Element Enrichment 354

Stellar Chromospheres and Coronae 355

Stellar Winds and Mass Loss 356

ASTRONOMICAL INSIGHT 15.1: STELLAR PULSATIONS AND MASS LOSS 358

Stellar Models: Tying It All Together 359

Perspective 360 Summary 360

Review Questions 361

Additional Readings 361

Chapter 16 Life Stories of Stars 363

PROGRESS OF IDEAS: Star Tracks 364

The Observational Evidence 365

Young Associations and Stellar Infancy 370

Star Formation 372

ASTRONOMICAL INSIGHT 16.1: HYPERACTIVE YOUNG SUNS 375

The Evolution of Stars Like the Sun 376

The Evolution of Massive Stars 381

Nuclear Evolution of a Massive Star 381

The End of the Reactions 383

Formation of the Heaviest Elements 386

The Anatomy of Supernova 1987A 386

Evolution in Binary Systems 389

ASTRONOMICAL INSIGHT 16.2: THE MYSTERIES OF ALGOL 390

Perspective 391

Summary 391

Review Questions 392

Additional Readings 392

Chapter 17 Stellar Remnants 395

PROGRESS OF IDEAS: Black Holes and Occam's

Razor 396

White Dwarfs, Black Dwarfs 397

White Dwarfs, Novae, and Supernovae 398

ASTRONOMICAL INSIGHT 17.1: THE STORY OF SIRIUS B 399

Supernova Remnants 401

ASTRONOMICAL INSIGHT 17.2: RECONSTRUCTING AN

**EXPLODED STAR 404** 

Neutron Stars 405

Pulsars: Cosmic Clocks 406

Neutron Stars in Binary Systems 407

Black Holes: Gravity's Final Victory 409

ASTRONOMICAL INSIGHT 17.3: VERY RAPID PULSARS 412

Do Black Holes Exist? 413

Perspective 415

Summary 415

Review Questions 415

Additional Readings 416

GUEST EDITORIAL: MASS LOSS AND THE EVOLUTION OF HOT

STARS, BY HENNY LAMERS 417



## SECTION FOUR THE MILKY WAY 423

#### Chapter 18 Structure and Organization of the Milky Way 425

PROGRESS OF IDEAS: The Kapteyn Universe 426
Variable Stars as Distance Indicators 429
The Structure of the Galaxy and the Location of the Sun 430
Galactic Rotation and Stellar Motions 431
The Mass of the Galaxy 432
The Interstellar Medium 434

ASTRONOMICAL INSIGHT 18.1: THE VIOLENT INTERSTELLAR MEDIUM 438

Spiral Structure and the 21-Centimeter Line 439
ASTRONOMICAL INSIGHT 18.2: 21-CENTIMETER EMISSION
FROM HYDROGEN 440

The Galactic Center: Where the Action is 442 Globular Clusters Revisited 444 A Massive Halo? 445 Perspective 446 Summary 446 Review Questions 447 Additional Readings 447



## Chapter 19 The Formation and Evolution of the Galaxy 449

PROGRESS OF IDEAS: Stellar Population and Dark Skies 450 Stellar Populations and Elemental Gradients 451 Stellar Cycles and Chemical Enrichment 453 The Care and Feeding of Spiral Arms 454 Galactic History 456

ASTRONOMICAL INSIGHT 19.1: THE MISSING POPULATION III 458

Perspective 460 Summary 460 Review Questions 461 Additional Readings 461

GUEST EDITORIAL: GLOBULAR CLUSTERS AND THE EVOLUTION OF THE MILKY WAY, BY RICHARD LARSON 462

## SECTION FIVE EXTRAGALACTIC ASTRONOMY 465

#### Chapter 20 Galaxies Upon Galaxies 467

PROGRESS OF IDEAS: The Shapley-Curtis Debate 468 The Hubble Classification System 469 Measuring the Properties of Galaxies 474

ASTRONOMICAL INSIGHT 20.1: GALAXIES AT THE EDGE OF THE UNIVERSE 477

The Origins of Spirals and Ellipticals 481
Clusters of Galaxies 483
The Local Group 483
Rich Cluster: Dominant Ellipticals and Galactic
Mergers 487
Cluster Masses 490
ASTRONOMICAL INSIGHT 20.2: LUMINOUS ARCS.

ASTRONOMICAL INSIGHT 20.2: LUMINOUS ARCS, GRAVITATIONAL LENSES, AND THE MASSES OF GALAXY CLUSTERS 491

Superclusters 493
The Origins of Clusters 494

ASTRONOMICAL INSIGHT 20.3: THE DISTRIBUTION OF GALAXIES 495

Perspective 496 Summary 496 Review Questions 497 Additional Readings 497

#### Chapter 21 Universal Expansion and the Cosmic Background 499

PROGRESS OF IDEAS: The Cosmic Background 500 Hubble's Great Discovery 501 Hubble's Constant and the Age of the Universe 504 Redshifts as Yardsticks 506

#### ASTRONOMICAL INSIGHT 21.1: THE DISTANCE PYRAMID 507

A Cosmic Artifact: The Microwave Background 508 The Crucial Question of the Spectrum 509 Isotropy and Daily Variations 510

#### ASTRONOMICAL INSIGHT 21.2: FALLING GALAXIES 511

Perspective 513 Summary 513 Review Questions 513 Additional Readings 514

#### Chapter 22 Peculiar Galaxies, Active Nuclei, and Quasars 515

PROGRESS OF IDEAS: Quasar Redshifts 516
The Radio Galaxies 517
Seyfert Galaxies and Active Nuclei 521
The Discovery of Quasars 522
The Origin of the Redshifts 524

ASTRONOMICAL INSIGHT 22.4: THE REDSHIFT CONTROVERSY 526

The Properties of Quasars 527
Galaxies in Infancy? 530
Perspective 532
Summary 532
Review Questions 533
Additional Readings 533

#### Chapter 23

Cosmology: Past, Present, and Future of the Universe 535

PROGRESS OF IDEAS: Einstein and the Cosmological Constant 536

Underlying Assumptions 537

ASTRONOMICAL INSIGHT 23.1: THE MYSTERY OF THE NIGHT-TIME SKY 538

Einstein's Relativity: Mathematical Description of the Universe 539

Open or Closed: The Observational Evidence 542

Total Mass Content 542

ASTRONOMICAL INSIGHT 23.2: DARK MATTER IN THE UNIVERSE 544

The Deceleration of the Expansion 544
The Inflationary Universe 547
The History of Everything 548

ASTRONOMICAL INSIGHT 23.3: PARTICLE P.

ASTRONOMICAL INSIGHT 23.3: PARTICLE PHYSICS AND COSMOLOGY 549

Possible Heavy Element Formation in the Big Bang 551
What Next? 552
Perspective 553
Summary 553
Review Questions 554
Additional Readings 554
GUEST EDITORIAL: PATTERNS IN THE UNIVERSE, BY
MARGARET GELLER 555

#### SECTION SIX LIFE IN THE UNIVERSE 561

## Chapter 24 The Chances of Companionship 563

PROGRESS OF IDEAS: The Complexity of UFO's 564 Life of Earth 565



#### **CONTENTS**

| Could Life Develop Elsewhere? 568  The Probability of Detection 569  ASTRONOMICAL INSIGHT 24.4 THE CASE FOR A SMALL VALUE OF N 574  The Strategy for Searching 572  Perspective 575  Summary 576  Review Questions 576  Additional Readings 577  GUEST EDITORIAL: DINOSAUR DIE-OFFS: A BOLT FROM THE BLUE, OR DEATH BY EARTHLY CAUSES, BY ROBERT BAKKER 578 |                                       | APPENDIX 6              | Major Telescopes of the<br>World A6              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|--------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                             |                                       | APPENDIX 7              | Planatary and Satellite Data A7                  |
|                                                                                                                                                                                                                                                                                                                                                             |                                       | APPENDIX 8              | Stellar Data A9                                  |
|                                                                                                                                                                                                                                                                                                                                                             |                                       | APPENDIX 9              | The Constellations All                           |
|                                                                                                                                                                                                                                                                                                                                                             |                                       | APPENDIX 10             | Mathematical Treatment of Stellar Magnitudes A13 |
|                                                                                                                                                                                                                                                                                                                                                             | APPENDICES                            | APPENDIX 11             | Nuclear Reactions in<br>Stars A14                |
| APPENDIX 1                                                                                                                                                                                                                                                                                                                                                  | Symbols Commonly Used in this Text A1 | APPENDIX 12             | Detected Interstellar<br>Molecules A16           |
| APPENDIX 2                                                                                                                                                                                                                                                                                                                                                  | Physical and Mathematical             | APPENDIX 13             | Clusters of Galaxies A16                         |
|                                                                                                                                                                                                                                                                                                                                                             | Constants Al                          | APPENDIX 14             | The Relativistic Doppler Effect<br>Affect A18    |
| APPENDIX 3                                                                                                                                                                                                                                                                                                                                                  | The Elements and Their Abundance A2   | APPENDIX 15             | The Messier Catalog A18                          |
| APPENDIX 4                                                                                                                                                                                                                                                                                                                                                  | Temperature Scales A3                 |                         |                                                  |
| APPENDIX 5                                                                                                                                                                                                                                                                                                                                                  | Radiation Laws A3                     | Glossary G1<br>Index I1 |                                                  |

SECTION ONE

## THE NIGHTTIME SKY AND THE TOOLS OF ASTRONOMY

We begin our study of astronomy with a discussion of the nature of astronomy and science. Chapter 1 defines astronomy and provides an overview of the nighttime sky and the scale of the universe.

Chapter 2 begins with a description of the motions of celestial objects that can be seen by the unaided eye. This will provide us with an immediate understanding of many of the phenomena that can be seen and appreciated with only our eyes as observing equipment. Thus, armed with all the knowledge our ancestors had, we will see how the ancients fared as they sought to develop a successful picture of the cosmos and their place in it. We will concentrate our historical discussions on the civilizations that arose on the shores of Mediterranean, for it was here that the foundations of modern astronomy were laid.

Chapter 3 discusses the major developments of the Renaissance, when fresh ideas arose in astronomy, as in all forms of human endeavor. We will learn to appreciate the awesome breakthroughs made by such giants as Copernicus, Brahe, Kepler, Galileo, and Newton, who led the way toward a correct understanding of the universe and the place of our planet in it. We will then move on to the laws of physics that govern such diverse phenomena as planetary orbits, the motions of molecules in a gas, and the tides on the Earth and other celestial bodies.

We would know nothing of the external universe were it not for the light that reaches us from faraway objects, and Chapter 4 describes the nature of light and the way we decipher its messages. We will find that an amazing variety of information can be derived from the spectra of objects like planets and stars. Things once considered forever beyond our grasp are now routinely measured, and in this chapter we will learn how this is done. Chapter 4 includes a description of telescopes and their principles and how they are used to measure light in all portions of the spectrum.



# The Essence of Astronomy



Nighttime at Kitt Peak Observatory (National Optical Astronomy Observatories).