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Preface

The idea of this book began with an invitation to give a course at the “hird
Chilean Winter School in Probability and Statistics, at Santiago de Chile,
in July, 1984. Faced with the problem of teaching stochastic integration in
only a few weeks, I realized that the work of C.Dellacherie (3] provided an
outline for just such a pedagogic approach. I developed this into a series of
lectures (Protter [6]), using the work of K. Bichteler 2], E. Lenglart 3] and
P. Protter [7], as well as that of Dellacherie. I then taught from these lecture
notes, expanding and improving them, in courses at Purdue University, the
University of Wisconsin at Madison, and the University of Rouen in France.
I take this opportunity to thank these institutions and Professor Rolando
Rebolledo for my initial invitation to Chile.

This book assumes the reader has some knowledge of the theory of
stochastic processes, including elementary martingale thtory. While we have
recalled the few necessary martingale theorems in Chap.I, we have not
provided proofs, as there are already many excellent treatments of martingale
theory readily available (e.g., Breiman (1], Dellacherie-Meyer (1, 2], or Ethier- . g‘
Kurtz [1]). There are several other texts on stochastic integration, all of**—
which adopt to some extent the usual approach and thus require the gencrd ‘
theory. The books of Elliott [1], Kopp [1], Métivier [1], Rogers-Williams [1]
and to a much lesser extent Letta {1} are examples. The books of McKean
(1), Chung-Williams (1}, and Karatzas-Shreve [1] avoid the general theory
by limiting their scope to Brownian motion (McKean) and to continuous
semimartingales.

Our hope is that this book will allow a rapid introduction to some of the
deepest theorems of the subject, without first having to be burdened with
the beautiful but highly technical “general theory of processes.”

Many people have aided in the writing ot this book, either through dis-
cussions or by reading one of the versions of the manuscript. I would like to
thank J. Azema, M. Barlow, A. Bose, M. Brown, C. Constantini, C. Dellache-
rie, D. Duffie, M. Emery, N.Falkner, E. Goggin, D. Gottlieb, A.Gut, S.He,
J.Jacod, T.Kurtz, J.Sam Lazaro, R.Leandre, E.Lenglart, G.Letta,
S.Levantal, P.A.Meyer, E.Pardoux, H.Rubin, T.Seilke, R.Stockbridge,
C.Stricker, P.Sundar, and M.Yor. I would especially like to thank
J.San Martin for his careful reading of the manuscript in several of its ver-
sions.



vill Preface

Svante Janson read the entire manuscript in several versions, giving me
support, encouragement, and wonderful suggestions, all of which improved
the book. He also found, and helped to correct, several errors. I am extremely

" grateful to him, especially for his enthusiasm and generosity. '
. Tke National Science Foundation provided me with partial support
*> throughout the writing of this book.
' Iwishto thank Judy Snider for her cheerful and excellent typing of several
versions of this book. R
Y R : Philip Protter
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Introduction

In this book we present a new approach to the theory of modern stochastic
integration. The novelty is that we define a semimartingale as a stochastic
process which is a “good integrator” on an elementary class of processes,
rather than as a process that can be written as the sum of a local martin-
gale and an adapted process with paths of finite variation on compacts: This
approach has the advantage over the customary approach of not requiring
a close analysis of the structure of martingales as a prerequisite. This is a
significant advantage because such an analysis of martingales itself requires
a highly technical body of knowledge known as “the general theory of pro-
cesses”. Our approach has a further advantage of giving traditionally difficult
and non-intuitive theorems (such as Stricker’s theorem) transparently simple
proofs. We have tried to capitalize on the natural advantage of our approach
by systematically choosing the simplest, least technical proofs and presen-
tations. As an example we have used K.M. Rao’s proofs of the Doob-Meyer-___
decomposition theorems in Chap. III, rather than the more abstract but less ™
intuitive Doléans-Dade measure approach.

In Chap. I we present preliminaries, including the Poisson process, Brown-
ian motion, and Lévy processes. Naturally our treatment presents those
properties of these processes that are germane to stochastic integration.

In Chap. II we define a semimartingale as a good integrator and establish
many of its properties and give examples. By restricting the class of inte-
grands to adapted processes having left continuous paths with right limits,
we are able to give an intuitive Riemann-type definition of the stochastic
integral as the limit of sums. This s sufficient to prove many thearems (and
treat many applications) including a change of variables formula (“Itd’s for-
mula”). ‘ o B

Chapter III is devoted to developing a minimal amount of “general the-
ory” in order to prove the Bichteler-Dellacherie theorem, which shows that
our “good integrator” definition of a semimartingale is equivalent to the
usualoneasaprocesaXhavingadeoompoeitionX=M+A,intothem
of a local martingale M and an adapted process A having paths of finite

~ variation on compacts. We reintroduce Meyer’s original notion of a process
=.-._-being natural, allowing for less abstract and more intuitive proofs. Howevey
in what is essentially an optional last section (Sect. 8) we give a simple proof

—~



2 Introduction .
that a process with paths of integrable variation is natural if and only if it
is predictable, since natural processes are referred to as predictable in the
literature. ,

Using the results of Chap.III we extend the stochastic integral by con-
tinuity to predictable integrands in Chap.IV, thus making the stochastic
integral a Lebesgue-type integral. These more general integrands allow us to
give a presentation of the theory of semimartingale local times.

Chapter V serves as an introduction to the enormous subject of stochastic
differential equations. We present theorems on the existence and uniqueness
of solutions as well as stability results. Fisk-Stratonovich equations are pre-

_sented, as well as the Markov nature of the solutions when the differentials
have Markov-type properties. The last part of the chapter is an introduc-
tion to the theory of flows. Throughout Chap. V we have tried to achieve a
balance between maximum generality and the simplicity of the proofs.



CHAPTER I
Preliminaries

1. Basic Deﬁnition‘s and Notation

We assume as given a complete probability space (2, F. ,P) In addition we
are given a filtration (Fi)o<i<oo- By a filtration we mean a family of o-
algebras (F¢)o<t<oo that is increasing: F, C F if s < t.

Definition. A filtered complete probability space (Q,.'F,'P, (Fe)ogt<oo) is
said to satisfy the usual hypotheses if
(i) Fo contains all the P-null s=ts of F;
(i) Ft = Nu>eFy, all ¢, 0 < t < oo; that is, the Gltration (Ftlogi<oo 18
right continuous.

“We always assume that the usual hypoiheses holl.

Definition. A random variable T' : @ — [0,00] is a stopping time if the
event {T' <t} € Fy,every t,0< ¢t < oo.

One important consequence of the righf continuity of the filtration is the
following theorem:

Theorem 1. The event {T <t} € F;, 0 <t < oo, ifand only if T is a
stopping time.

Proof. Since {T < t} = n¢+e> >e{T < u}, any € > 0, we have {T' <
t} € NuseFu = Fi, 80 T is a stopping time. For the converse, {T < t} =
UisesofT St —¢€}, and {T <t — €} € Fy—, hence also in Fy. a

‘A stochastic process X on (2, F, P) is a collection of random variables
(Xt)o<t<oo. The process X is said to be adapted if X; € .7-', (that is, is Fy-
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measurable) for each t. We must take care to be precise about the concept
of equality of two stochastic processes. : '

Definition. Two stochastic processes X and Y are modiflcations if X, =Y;
a.s., each t. Two processes X and Y are indistinguishable if a.s., for all ¢,
X¢ = }"g

If X and Y are modifications there exists a null set, N¢, such that if
w ¢ Ny, then Xy(w) = Yi(w). The null set N; depends ont. Since the interval
[0,00) is uncountable the set N = UpgscoolVt could have any probability
between 0 and 1, and it could even be non-measurable. If X and Y are
indistinguishable, however, then there exists one null set N such that if
w ¢ N, then Xy(w) = Y;(w), for all t. In other words, the functions t — X¢(w)
" and ¢+ Yi(w) are the same for all w ¢ N, where P(N) = 0. The set Nisin
F., all t, since Fo contains all the P-null sets of F. The functions t — X¢(w)
mapping [0, c0) into R are called the sample paths of the stochastic process
x. .

Definition. A stochastic process X is said to be cadlag if it a.s. has sample
paths which are right continuous, with left limits. (The nonsensical word
cddlag is an acronym from the French “continu & droite, limites & gauche”.)

Theorem 2. Let X and Y be two stochastic processes, with X a modification
of Y. If X and Y have right continuous paths a.s., then X and Y are
indistinguishable.

Proof. Let A be the null set where the paths of X are not right continuous,
and let B be the analogous set for Y. Let Ny = {w : Xe(w) # Yi(w)}, and let
N = ;eqNt, where Q denotes the rationals in [0,00). Then P(N) = 0. Let

M= AuguN, and P(M) = 0. We have X(w) = Yi(w) forallt € Q, ¢ éM.
If ¢ is not rational, let t, decrease to ¢ through Q. For w éM, X, (w) =
Y:,(w), each n, and X¢(w) = lima—co Xt (w) = iMoo Y2, (W) = Ya(w)
Since P(M) =0, X and Y are indistinguishable. O

Corollary. Let X and Y be two stochastic processes which are cddldg. If X
. is_a modification of Y, then X and Y are indistinguishable.

Cadlag processes provide natural examples of Ast.opping times.

Definition. Let X be a stochastic process and let A be a Borel set in R.
Define
T(w) = inf{t > 0: X; € A}.

Then T is called a hitting time of A for X.
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Theorem 3. Let X be an adapied cddlig stochastic process; and let A be an
open set. Then the hitting time of A is a stopping time.

Proof. By Theorem 1 it suffices to show that {T <t} € .7";,’ 0 <t < oo. But

{r<t}y= |J {X,€eA},
s€Qn[o,t)

since A is open and X has right continuous paths. Since {X, € A} =
X;71(A) € F,, the result follows. ]

Theorem 4. Let X be an adapted cadldg stochastic process, and let A be a
closed set. Then the random variable

T(w) = inf{t : Xo(w) € A or Xi.(w) € A}
-
is a stopping time.
Proof. By X;—(w) we mean lim,—.¢, ,<t Xs(w). Let 4, = {z : d(z,A) < %},

where d(z,A) denotes the distance from a point z to A. Then A, is an open
set and

{T<t}={XreAor XemeA}U{(} U (X.€4}}. O
n  +€Qn[o,t)

It is a very deep result that the hitting time of a Borel set is a stopping
time. We do not have need of this result.

The next theorem collects elementary facts about stopping times; we
leave the proof to the reader.

Theorem 5. Let S, T be stopping times. Then the following are stopping
times: B
(i) SAT =min(S,T)
(i) SV T =max(S,T)
(i) S+ T
(iv) aS, where a > 1.

The o-algebra F; can be thought of as representing all (theoreticdly)'
observable events up to and including time t. We would like to have an
‘analogous notion of events that are observable before a random time.

Definition. Let T' be a stopping time. The stopping time c-algebra, Fr, is

" defined to be

(A€ F:AN{T <t} € F, all t > 0}.
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The previous definition is not especially intuitive. However it does well
represent “knowledge” up to time T', as the next theorem illustrates.

Theorem 8. Let T be a finite stopping time. Then Fr is the smallest o-
algebra containing all cddldg processes sampled at T. That is,

Fr = o{Xr; X all adapted cddldg processes}.

Proof. Let G = a{XT,X all adapted cadlag processes}. Let A € Fr. Then
Xt = 151(4>T1)" is a cAdlag process, and X7 = 15; hence A € G, and Fr C G.

Next let X be an adapted cadlag process. We need to show X7 is
Fr-measurable. Consider X(s,w) as a function from [0,00) x  into R.
Construct ¢ : {T' < t} = [0,00) X @ by p(w) = (T(w),w). Then since
X is adapted and cadlag, we have X7 = X o ¢, is a measurable mapping
from ({T < t},F: N {T < t}) into (R, B), where B are the Borel sets of R.
Therefore

{w: X(T(w),w) € B}Nn{T < t}

. is in F, and this implies X1 € Fr. Therefore G C Fr. O

We leave it to the reader to check that if S < T a.s., then Fs C Fr, and
the less obvious (and less important) fact that Fs N Fr = Fgar.

If X and Y are cadlag, then X; = Y; a.s. each £ implies that X and Y are
indistinguishable, as we have already noted. Since fixed times are stopping
times, obviously if X7 = Yr a.s. for each finite stopping time T, then X
and Y are indistinguishable. If X is cadlag, let AX denote the process
-AXy = Xy — X¢~. Then AX is not cadlag, though it is adapted and for
a.s. w, t -+ AX; = 0 except for at most countably many ¢. We record here a
useful result.

Theorem 7. Let X be adapted and cddldg. If AXTl(T<00) =0 a.8. for each
stopping time T, then AX is indistinguishable from the zero process.

Proof. It suffices to prove the result on [0,tp] for 0 < to < oo. The set
{t : |AX}:| > 0} is countable a.s. since X is cadlag. Moreover

{t: IAx.|>0}—U{t |AX:| > }

n=1
and the set {t : [AX,| > 1} must be finite for each n, since t, < co. Using
Theorem 4 we define stopping times for each n mduct.xvely as follows:

T™! = inf{t > 0: |AX] > ;}
T —inf(t > T™1: |AX:| > %}.

1 weA

¥ 14 is the indicator function of A : 14(w) = {0 CEA
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Then Tnk 5 Tak=1 56 on {T™*~! < 0o}. Moreover

{IaXe > 0} = | J{I6X7ns1(pm. "<oo}| > 0},
n,k )

where the right side of the equality is a countable union. The result follows.
a

Corollary. Let X and Y be adapted and cddlig. If AXTI{T<°°}
- = AYrl{r<coo) 6.8 for each stopping time T, then AX and AY are in-
dutmguuhable

A much more general version of Theorem 7 is true, but it is a very deep
result which uses Meyer’s “section theorems”, and we will not have need of
i*, See, for example, Dellacherie [1] or Dellacherie-Meyer [1].

A funda.mental theorem of measure theory that we will need from time
to time is known as the Monotone Class Theorem.. Actually there are several
such theorems, but the one given here is sufficient for our needs.

_,Deﬂmtlon. A monotone vector space H on a space () is defined to be
 the collection of bounded, _real-valued functions f on Q satisfying the three

conditions:

(i) H is a vector space over R;
(ii) 1q € M (i.e., constant functions are in H)
(m) If(f,.),.zl CH&nd0<_f1<fz <f,._...andlim,._..°°f,.=f
and f is bounded, then f € H. :

Definition. A collection M of real functions defined on a space (2 is said to
be multiplicative if f, g € M implies that fg € M.

For a collection of real-valued functions M defined on {2, we;let o(M)
denote the space of functions defined on Q which are measurable with respect
to the o-algebra on § generated %’{ fi(A);AeBR),fe M}

Theorem 8 (Monotone Class Theorem). Let M be a mult:phcatwe class
of bounded real-valued functions defined on a space 2, and let A = o(M). If
‘H is a 'monotone vector space c§ ammg M, then H contains all bounded,

A-measurable functions.

Theorem 8 is proved in Dellaéherie-Meyer [1, p. 14] with the additional
hypothesis that 7 is closed under umform convergence. This extra hypoth-
esis is unnecessary, however, since every monotone vector space is closed
under uniform convergence. (See Sharpe (1, p. 365)).
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2. Martingales

In this section we give, mostly without proofs, only the essential results fron
the theory of continuous time martingales. The reader can consult any of
a large number of texts to find excellent proofs; for example Dellacherie-
Meyer [2], or Ethier-Kurtz [1]. Also, recall that we will always assume as
given a filtered, complete probability space (2, F, (Ft)o<t<oo, P), Where the
filtration (F¢)o<t<oo is assumed to be right continuous.

Definition. A real valued, adapted process X = (X¢)o<t<oo is called a mar-
tingale (resp. supermartingale, submartingale) with respect to the filtration
(}- t)OStSoo if

(i) X: € L}(dP); that is, E{|X;|} < oo;
(ii) if s < ¢, then E{X|F,} = X,, a.s. (resp. E{X;|F,} < X,, resp.
ZX')- » .

Note that martingales are only defined on [0, 00); that is, for finite ¢ and
not t = oo. It is often possible to extend the definition to ¢ = oco.

Definition. A martingale X is said to be closed by a random variable Y if
E{|Y]|} < 00 and X; = E{Y|F:},0<t < oo.

A random variable Y closing a martingale is not necessarily unique.
We give a sufficient condition for a martingale to be closed (as well as a
construction for closing it) in Theorem 12.

Theorem 9. Let X be a supermartingale. The function t — E{X,} is right
continuous if and only if there ezists a unique modification, Y, of X, which
is cddldg. Such a modification is unique.

By uniqueness we mean up to indistinguishability. Our standing assump-
tion that the “usual hypotheses” are satisfied is used implicitly in the state-
ment of Theorem 9. Also, note that the process Y is, of course, also a su-
-permartingale. Theorem 9 is proved using Doob’s Upcrossing Inequalities.
I X is a martingale then t — E{X,} is constant, and hence it has a right
continuous modification.

Corollary 1. If X = (Xt)o<t<oo 8 6 martingale then there ezists a unique
modification Y of X which is cddldg.

Since all martingales have right continuous modifications, we will always
assume that we are taking the right continuous version, without any special
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. mention. Note that it follows from Corollary 1 that a right continuous
martingale is cAdlag.

Theorem 10 (Martingale Convergence Theorem). Let X be a right
,continuous supermartingale, 8uPg<icoo E{|X1|} < 00. Then the random vari-
able Y = lim¢_ooX: 6.8 ezists, and E{]Y|} < oo. Moreover if X is
& martingale closed by a random varisble Z, then Y also closes X and
Y= E{Z|Vo_<_¢<oo ft}-z ‘

A condition known as uniform integrability is sufficient for a martingale
to be closed.

Definition. A family of random varisbles (Ua)aca is uniformly integrable
if

lim sup/ |{UaldP = 0. .
R a J{|Ual2n}

" Theorem 11. Let (Uy)aca be a subset of L'. The following are equivalent:

(3) (Ua)aea is uniformly integrable.
(1) sup,eaE{|Ual} < 00, and whatever € > 0 there ezists 6 > 0 such that
A€ F, P(A) < 6, imply E{|Ualr|} <e.
(i5) There ezists a positive, increasing, convez function G(z) defined on
[0, 00) such that lim,,...mgjz32 = 400 and sup, E{G o |Ua|} < oo.

The assumption that G is convez is not needed for the implications
(i5i)=>(3) and (3ii)=>(3).

Theorem 12. Let X be a right continuous martingale which is uniformly
integrable. Then Y = limy_,co X a.s. ezists, E{|Y|} < oo, and Y closes X
as a martingale. o

Theorem 13. Let X be a (right continuous) martingale. Then (Xg)gzo is
uniformly integrable if and only if Y = limi_,co X¢ ezists a.s., E{|Y|} < oo,
and (Xt)o<t<co 18 @ martingale, where Xoo =Y.

If X is a uniformly integrable martingale, then X; converges to X =
Y in L' as well as almost surely. The next theorem we use only once
(in the proof of Theorem 28), but we give it here for completeness. The
notation (X, )n<o refers to a process indexed by the nonpositive integers:
cet X—21 X-—'I)XO-

2 VOgKoo F: denotes the smallest o-algebra generated by (%), all ¢, 0 <t < o0.
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Theorem 14 (Backwards Convergence) Let (Xn)ngo be a martmgale
Then limp oo Xpn = E{X0|n,.—-°o Fa} a.s. and in L.

A less probabilistic interpretation of martingales uses Hilbert space the-
ory. Let Y € L%*(Q,F,P). Since F; C F, the spaces L}(Q,F;, P) form a
family of Hilbert subspaces of L?(Q2, ¥, P). Let ™Y denote the Hilbert space
projection of Y onto L*(Q, ¢, P)

Theorem 15. Let Y € L*(Q,. .7-' P) The proccu Xg “Y isa unifé'r"mly
integrable martingale.’

Proof. It suffices to show E{Y|F;} = ®Y. The ra.ndom va‘nable E{Y|F} .
is the unique F;-measurable r.v. such that [, YdP = [, E{Y|F}dP, for
any event A € F;. We have [, YdP = [,-*YdP + [,(Y —™ Y)dP. But
fA(Y mY)P = [ 14(Y— "Y)dP Since 14 € L%(Q, .‘F,,P), and (Y -™Y)
is in the orthocomplement of L%(Q, F;, P), we have [ 14(Y — ™Y )dP =0,
and thus by uniquenéss E{Y|F;} = ™Y. Since [[**Y]|z2 < ||Y]|L2, by part
(iii) of Theorem 11 we have that X is uniformly xntegrable (take G(z) = 1:2)

The next theorem is one of the most useful martingale theorems for our
purposes. ‘ '

Theorem 16 (Doob’s Optiona.l Sampling Theorem). Let X be a right
continuous martingale, which is closed by a random variable X,. Let S and
T be two atoppmg times such that S < T a.s. Then Xg and Xt are integrable
and —

Xs = E{Xﬂfs} a.s.

Theorem 16 has a similar version for supermartingales, but we will not -
have need of it. See Dellacherie-Meyer [2].

Theorem 17. Let X be a right continuous supermartingale (martingale), -
and let S and T be two bounded stopping times such that S < T a.s. Thcn
Xs and Xr. are integrable and

Xs 2 E{X7|Fs} a.s. (=).
If T is a stopping time, then so is t AT = min(t, T), for each t > 0.

Definition. Let X be a stochastic process and let T be a random time. X7
is said to be the process stopped at T if X,T = XiaT.

Note that if X is adapted and cadlag and if T is a stopping time, then
XT = Xoar = Xeljeery + X1l(eo1)



