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ABSTRACT

In this paper, we describe a three-component image model
developed based on psychovisual studies of the human visual
system. This image model consists of the primary compo-
nent which contains the strong edge information of the im-
age, the smooth component which represents the background
slow-intensity variations and the texture component which
contains the textures. Using this image model, we develop
an adaptive DCT image coder in order to achieve high sub-
jective performance at low bit rates (< 0.5 bits/pixel). The
simulation results show that this adaptive DCT coder per-
forms better than JPEG both objectively (in PSNR) and
subjectively especially at low bit rates.

I. INTRODUCTION

Adaptive Discrete Cosine Transform (DCT) coding is a well
established technique for image data compression applica-
tions [1] - [3]. In this scheme, the image is segmented into
blocks of equal size and each block is operated upon by the 2D
DCT. The transform blocks are then classified into several
classes; each block is subsequently encoded with an encoder
matched to its class. While these DCT coders offer good
perceptual performance at bit rates about 1.0 bit/pixel and
above, they usually produce specific types of visible distor-
tion, e.g., blockiness, blurred edges, etc., at lower bit rates.
We observe that the fidelity criterion used in most of
the existing DCT-based image coding systems is the Mean-
Squared-Error (MSE), which owes its popularity to its mathe-
matical tractability and to the fact that generally small values

of MSE correspond to perceptually high-quality reconstructed - -

images. This fact is important because the human eye is usu-
ally the final judge of the quality of the reconstructed image.
There is evidence, however, that the human eye is not an MSE
detector [4], and that among all image coders of the same
subjective performance, those based on the MSE do not nec-
essarily have the lowest bit rate. These observations and the
limitations experienced by the MSE-based image coding sys-
tems suggest that using a subjective-based fidelity criterion
other than MSE may yield image coding systems of superior
subjective performance at lower bit rates.

To this end, based on some observations of p3yqEPHIE
aspects of the human perception (8}, [9], we have gniroaucea
a three-component image model (3CIM) consisting g¢f#{ ¥Rt
primary, (2) the smooth and (3) the testure compgnencs; tne
primary component contains the strong edge inforrjaggy, the
smooth component provides the background sloy-ikf¥nsity
variations and the texture component simply coktdins the
textures of the image. These three components havp diff&®ent

1This work was supported in part by National Scie
tion grants NSFD MIP-86-57311 and NSFD CDR-85-00108.

importance to the human perception [5], and thus should be
treated accordingly in an image coding system.

In this paper, in addition to describing the 3CIM, we re-
port an adaptive DCT coder based on the 3CIM, in which
the primary component is encoded using the chain code rep-
resentation {7] and the smooth and texture components are
encoded by an entropy-coded adaptive DCT image coder.
In this scheme, the blocks are classified according to the ac
energies of the corresponding smooth and texture component
blocks. The bits are allocated efficiently using the steepest de-
scent from zero (SDFZ) algorithm [6]. The DCT coefficients
are quantized with uniform-threshold quantizers (UTQs) and
encoded using Huffman codes (HCs). The simulation results
show that this system has an encouraging subjective perfor-
mance especially at lower bit rates.

This paper is organized as follows. The 3CIM is described
in Section II, followed by descriptions of the coding techniques
for the three components in Section III and simulation results
in Section IV. Section V contains a summary and conclusions.

II. A THREE-COMPONENT IMAGE MODEL
Based on the work in [8] [9], a study of psychovisual aspects of
the human perception is conducted. This study indicates that
the process of formation of the human visual perception can
be modeled by the mechanism of appropriately formulated
energy minimization problems [5]. For example, for an image
consisting of broad black and white figures X° = {27}, 4,5 =
0,...,M —1, the visually perceived image, denoted as X? =
{z?,}, is modeled as the solution of the following problem,

M-2M~-2

D0 D Ui = ziar)? + (30 — 3i41,3)°),

i=0 3=0

i) M
subject to zi; = z?; for (i,j) € B, where B contains the
pixels at the locations of edges [5]. Intuitively, this model,
named as a minimum information principle (MIP), suggests
that the human visual system (HVS) estimates the bright-
ness of an image only from the brightness variations in the
image, Other situations can be modeled as similar minimiza-
ﬂpmr]biems and interprated intuitively as follows. In the
Eedircbse to a “strong edge” of an image, the HVS detects
less_texflures as compared to areas without strong edges; for
e lled of smooth brightness changes, the HVS tends to de-
tect lesdl brightness changes.

AR¥relsed Image

M&¥3atkd by the above psychovisual study of the HVS, we
attppaptf to extract the strong edge information - the most
inT§gktajpt information for the formation of the human per-

Seotignd from the image, in order to give it a special treat-
ment in the image co?ing system to be designed. To do so,
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we introduce in the following, the concept of a stressed image
associated with the original image.

Let the original image be denoted by X = {z.,}, 1,7 =
0,...,M-1, where z;; is the intensity value of the pixel (1, 7),
and M is the size of the image; similarly, the corresponding
stressed image is denoted by X* = {z!,}. The stressed image
X* has the following properties: (i) at the strong edges of X,
X* closely approximates X, i.e., the squared-errors, (zi,5 —
zi;)?, are small at these locations; (ii) in other areas such
as smooth and texture areas, X* is smooth and its squared-
errors from X are only loosely constrained. In other words,
X* contains only the strong edge information and the smooth
intensity variations of X. The smoothness at pixel (i,7) is
measured by the so-called pizel row-curvature energy Cl, and
pizel column-curvature energy Cs, defined as follows, Cly=
(zij-1 — 223, + I‘.H'l)z! C;.l = (zj-14 — 2250 + Ij+1.')2v
fori=0,...,M-1andj=1,...,M=2 and Cj; =0,
C5i=0, otherwise. In order to generate X*, we consider a
linear combination of the squared-errors between X and X°*
and the curvature energies, C7, and C7;, at pixel (1,7),

;oye — ! 2, y2 o 3

Ei (X, X% A5 = A (i -z{;) +A‘,jC‘yi+)“.JCI‘;,J7 (2)
where the parameters in Ay ; = (Afd,)\?d, X:-’,,-) are three non-
negative real numbers. Then, X* can be defined as the so-
lution of the following minimization problem with a proper
parameter set A = {Aij 1,3 = 0,1,...,M =1},

M-1M-1

rhii Z Z B (X, X7, Ais)s (3)
=0

(I?vl} 1=0

where X° = {(1,7,27,)}. The relation of X and X° gov-
erned by (3) can be modeled as a 2D low-pass filter with
input X and output X *: the cutoff frequencies at (1,7) of the
filter are controlled by /\}_J, )\?‘J and X?J. Larger values of
Ai, give higher cutoff frequencies in both directions, while
larger values of )«?‘J and A?J lead to lower cutoff frequencies
in the row-direction and column-direction, respectively [5].
Therefore, a proper parameter set A should consists of small
values of )‘3,] /)\f‘J and )\?J /)\3,] at strong edges and large val-
ues at other locations. Since the locations of strong edges
are not known a priori, the stressed image X* is generated
iteratively. Starting with a uniform parameter set, the prob-
lem is solved to get X'. Then the parameter set is updated
by changing ,\’fl_,//\fl_, and )\f‘J/A:‘,] inversely proportional to
the curvature energies C!, and Ci 5 respectively, of X', The
above procedure is repeated until the relative variation of the
objective function in (3) for two consecutive iterations is less
than a given threshold (see [5] for details).

B. The Three Components ;

The strong edge information of X can be easily determined
by identifying pixels of large curvature energies in X °.. These
pixels characterize the brim contours of strong edges [5]. A
contour is defined as a sequence of triples: b = {(*,55,
zix jx)}, such that |i*-1 =ik <1, |5 - j¥| < 1, and

1This problem is named as an Energy }\linimizati.on Model
(EMM) problem due to its analogy to a mechanical system [5].

(ik"l,jk_l) # (i%,5%), for 1 < k< m, and of = MaXick<m
|2{n o — 7| < T., where T. > 0, T is the average intensity
on b, m is called the length of the contour, and o7 is referred
to as the mazimum-variation of the intensities. This defini-
tion of a contour is similar to the previous ones [7] except for
the additional condition on the intensities. The contours are
generated using a local search algorithm as described in (5]
The primary component of X, denoted by P = {pis},
is generated from the extracted strong edge information by
solving a minimization problem similar to (1). Since X* con-
tains the strong edge information and the smooth intensity
variations of X, the difference image XeX*={(zi;—zi,)}
consists of the textures of X. We define T’ = {ti;}=XeX*
and S = {si;} =X"6P corresponding to the texture and
the smooth components, respectively. Therefore, we have

X=T®S®P={(ti,+si,+ris)} (4)

The above decomposition is referred to as the 3-component
image model (3CIM). An example of the decomposition of a
test image into its three components is provided in Fig. 1.

0 riin al

(b) Texture

(2)

(c) Smooth (d) Primary
Fig. 1: The original image and its 3 components.

I1I. CODING OF THE THREE-COMPONENTS

The primary component is coded by encoding the informa-
tion in the strong edge brims. The geometrical information
of the brim contours are coded using N-ring chain codes (1),
[10]). The outputs of the N-ring chain coder are then encoded
using an HC. The intensities of the contour are represented
by the average T (see Section I1.B), which is then quantized
with a UTQ and coded using an HC. From the received infor-
mation, the receiver can obtain a replica of the the primary
component P, based on the MIP.

111-202

[



The smooth and texture components are encoded with an
entropy-coded adaptive DCT coder. More precisely, T and S
are blocked into (L x L) blocks tm,n and 8m n, zespectively.
The 2D DCT coefficients of tm,n and S,,,» are denoted by
Tmn and Sm,n, respectively. Similar to [1], the blocks are
classified into four classes, except that the classification is
made in two stages. In the first stage, the blocks are classified
into one of two classes by comparing the ac energies of {Sm,»}
against a threshold Ty; this threshold is chosen such that
the resulting two classes contain the same number of blocks.
In the second stage, each resulting class of the first stage is
further divided into two classes by comparing the ac energies
of {tm,n} against another threshold. The two thresholds T3
and T§ in the second stage {one for each class of the first
stage) are also chosen such that the resulting classes have
the same number of blocks in them. With this two-stage
classification, the frequency distribution of the ac energies is
utilized since S (T') contains only low (high) frequency energy.

We denote the variance of the (i,j)th DCT coefficient of
T @ S in the kth class by o2(xu,v), where k = 0,...,3, and
w,v=0,...,L—1, and assume that the (0,0)th, (0, 1)th and
(1,0)th coefficients have Gaussian distributions (GD), while
all other coefficients have Laplacian distributions (LD). This
assumption is based on a study of the DCT coefficients’ dis-
tributions. The DCT coefficients are quantized with UTCs
whose outputs are then encoded using appropriately designed
HCs. The two UTC-HC coders for the GD and LD used here
are identical to those used in {11]. The variance-normalized
MSEs associated with the UTC-HC coder operating at r
bits/sample are denoted by dg(r) and di(r) for the GD and
LD, respectively. The overall MSE is

3
D = o%(0,0)dg(r0,0) + %Z{"'i(ov 1)dG("g,1) +

Z k=0

(u,v)#(0,0),(0,1),(1,0)

ok(1,0)da(ri,) + ok(u,v)de(riL)},  (5)

where 0%(0,0) and ro,0 are the variance and the coding rate,
respectively, for the dc coefficient which is encoded in the
same manner regardless of which class it belongs to, and 7% ,
is the coding rate for the (u,v)th coefficient in the kth class.
The overall bit rate is given by

3
_ 1 1 k .
R=ro+r.+ -L—2{To,o + 1 E E Tu,u,} bits/pixel, (6)

k=0 u,v#(0,0)

where r, is the bit rate for coding the overhead information,
namely, the class information (2 bits/block), the mean and
variance of the dc coefficients (64 bits for each frame), the
bitmaps? and the normalization factor ¢ (32 bits for each
frame) defined below and r. is the bit rate for coding of the

2The bitmap {b% ,} (k =0,...,3) is encoded using two integers

(2 x log, L bits) to specxfy the la.rgest indices u; and vx such that
.‘k » # 0 and b 4o, # 0 for some v and u and using 6 bits to
represent every bu o1 for u < ug and v < vg. Thus the 6verall bit
rate for the bitmaps will be 4(2logy L +6uj vy ) bits for each frame.

primary component. The bit rates roo and rﬁ,,,’s are deter-
mined efficiently with the SDFZ algorithm (6].

To reconstruct the DCT coefficients at the receiver side,
oi(u,v)’s ((z,v) # (0,0)) are needed. Notice that if the
quantization errors of DCT coefficients are known, o} (u,v)’s
can be computed easily from the rates. To investigate the
quantization errors of the DCT coefficients, we use the Shan-
non lower bound (SLB) to approximate dg(r) and d.(r) [12]

dr(r) = ezp(—2r)/7. )]

Substituting (7) into (5) and using the Lagrange multiplier,
one can solve this constrained minimization problem (with
the equality constraint (6)) and find that the optimal quanti-
zation errors for different coefficients are the same. Therefore,
in the ideal case, only one number is required for the receiver
to calculate the variances a%(u, v)’s ((u,v) # (0,0)) from the
bitmaps; this number is called the normalization factor ¢ and
equals the quantization error of any DCT coefficient (except
the (0,0)th). In the system actually implemented, the aver-
age of the quantization errors is used as the value of c.

IV. SIMULATION RESULTS

The test image, referred to as LENA, is a 512 x 512
monochrome image shown in Fig. 3 (a). The primary compo-
nent is encoded using a bit rate equal to 0.04 bits/pixel; the
HCs for the output of the 2-ring chain code and the UTC-HC
coder of contour intensity values are designed based on the
statistics of the contours of eight images excluding LENA.
The block size is 16 x 16 for the simulations of the DCT
schemes developed here.

dg(r) = exp(-2r),

35

L mrTT T 1T
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o 0\4 \JPEG*HC
: p Scheme B

/
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1 .2 3 4 5
bit rate ( bits/pixel )

Fig. 2: PSNR performance (in dB).

The PSNR performance of the above mentioned adaptive
DCT coder based on 3CIM (Scheme A) is depicted in Fig. 2
for bit rates between 0.1 and 0.5 bits/pixel. Also included in
Fig. 2 are the PSNR performance of JPEG with HC (JPEG-
HC) aswell as that of an entropy-coded adaptive DCT coder
(Sélieme B) similar to Scheme A but with the exception that
the 3CIM is not used. In Scheme B, the classification algo-
rithm is identical to that of [1]. Scheme B can be thought of
as in knftopy-coded modification of the scheme in [1). It can
be seen from these PSNR results that Scheme A offers no-
ticegble itaprovements over JPEG-HC especially at lower bit
rates and-also performs better than Scheme B. A few recon-
structed images are shown in Fig. 3. In comparing the results

PSNR ( dB )

illjl
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of Scheme A and Scheme B, we note that the reconstructed
images obtained from Scheme A have better perceptual qual-
ity especially at the locations of strong edges. Our experi-
mental studies indicate that while the coding of the primary
component in Scheme A is responsible for the better subjec-
tive quality of Scheme A (as compared to Scheme B), the
PSNR improvements are due to the two stage classification
algorithm in Scheme A.

V.SUMMARY AND CONCLUSIONS
In this paper, an adaptive DCT image coder witha subjective-
based fidelity criterion is introduced in order to achieve good
subjective performance at bit rates equal to and below 0.5
bits/pixel. A three-component image model, which is devel-
oped based on a psychovisual study of the HVS, is utilized
for the special treatment of the primary component and for
the block classification to capture the frequency distribution
of ac energies. Close to optimal UTC-HC coders are used
to quantize the DCT coefficients. The variances of the DCT
coefficients are estimated from the bitmaps based on an ar-
gument using the SLB. The simulation results show that this
new DCT coder performs better than JPEG-HC in PSNR,
and offers high subjective quality at low bit rates.
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REAL-TIME RECURSIVE TWO-DIMENSIONAL DCT FOR HDTV
SYSTEMS |

C.T. Chiv and K.J. Ray Liu
Electrical Engineering Department and Systems Research Center,
University of Maryland, College Park, MD 20742 USA

ABSTRACT

The two-dimensional discrete cosine transform (2-
D DCT) has been widely recognized as the most
effective technique in image data compression. In
this paper, we propose a new algorithm to com-
pute the 2-D DCT from a frame-recursive point of
view. Based on this approach, a real-time paral-
lel lattice structure for the 2-D DCT is developed.
The system is fully-pipelined with throughput rate
N clock cycles for an N x N successive input data
frame. This is the fastest pipelined structure known
so far. Moreover, the 2-D DCT architecture is mod-
ular, regular, and requires only two 1-D DCT blocks
which can be extended directly from the 1-D DCT
array. We also propose a parallel 2-D DCT archi-
tecture and a new scanning pattern for the HDTV
system to achieve higher performance.

1. INTRODUCTION

In recent years, much research has been focus on
image data compression, especially for the applica-
tion of the next generation TV, “HDTV”. To make
HDTV systems practical, bit rate reduction and
data compression are indispensable [5]. The DCT
coding approach has obtained most attention due to
its superior energy compaction property and much
simpler computations than the optimal Karhunen-
Loeve transform (KLT). To satisfy the high speed
video transmission system, fast and efficient algo-
rithm to implement the 2-D DCT with simple hard-
ware is strongly demanded (1, 2, 4]. The irregular-
ity, global communication, and transposition delay
of the existing 2-D DCT architectures have severe
impacts on high speed video signal processing sys-
tems. Here we propose a new real-time recursive
2-D DCT architecture which requires only two 1-D
DCT arrays and no transposition is required.

tThe work is partially supported by ECD-8803012.

2. FRAME RECURSIVE 2-D DCT
ARCHITECTURE

A new algorithm for the 2-D DCT by employing
the frame-recursive concept [3] on successive input
frames is presented. We adopt the frame-recursive
approach since in digital signal transmission data
arrive seriesly. Such approach can obtain the 2-
D DCT in real-time recursively. Based on this
method, a parallel and fully-pipelined 2-D DCT
lattice structure which can dually generate the 2-
D DCT and discrete sine-cosine transform (DSCT)
is developed. The 2-D DCT {X.(k,1,t) : k,1 =
0,1,...,N — 1.} and 2-D discrete sine-cosine trans-
form (DSCT) {X,.(k,,t) : k = 1,2,..,N;l =
0,1,..,N — 1.} of an N x N 2-D data sequence
{z(m,n) : m = 0,1,2,.5n = 0,1,..,.N~1}is
defined as

t+N-1N-~1

XAk,l,t):—j%C(k)C(I) > > z(m,n)

P =

and

4 N4t-1N-1
Xae(k,1,1) = 35 C()CW) S % 2(m,n)
m=t n=0
. [7m[2(m—=1t)+ 1]k 7(2n + 1)I
-sin [ 5N ] cos [T] (2)

where

C(lc)—{ -\/15 ifk=0and k=N,

1 otherwise.

In the following, we call X.(k,[,t) and X, (k,I,t)
the the t’th frame 2-D DCT and 2-D DSCT of an
N x N 2-D data frame z(m,n). The recursive re-
lations for the (¢ + 1)’th frame transformed data
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Xe(k,1,t+ 1) and X,c(k,1,t + 1) as well as the t’th
frame transformed data X.(k,l,t) and X,.(k,1,1)
are given by

— - k
Xo(k, 1, t+1) = X, cos (%’i) +X ¢ sin (1—> , (3)

N
and
Xoe(k, 1t +1) = X, cos (%) X, sin (x’) ,
(4)
where
- 4 t+N N-1
Xe= 3000 Y, X stmn)
m=t+1l n=
e L
and
t+N N-1
X.. = 2 CHCWD Y > =mm)
m=t+1 n=
. [w[2(m —t) 4+ 1]k w(2n + 1)
- sln [ T ] [T‘:‘ (6)

The relations between X, and X ;. and the previous
transformed data X.(k,[,t) and X, (k,1,t) are

X = Xe(k,1,1) + be(k, 1, 1) = C(k)°°s<2lff) )

and

- ) rk
A,c=k,c(k,1,t)+6c(k,1,t) C(k)sin (2N>
(8)

And the intermediate values é.(k,[) are

9 N-1
bk, ) = NC(I)Z[(—l)ka:(N,n)—x(O,n)]
n=0

os [r(2n + 1)1] .

oW )

The relation between X.(k,{,t + 1) and X.(k,1,t)
is realized by lattice array II with lattice module
shown in Fig. 1. It is noted that é.(k,!) in (9) is the
1-D DCT of the data vector which is the difference
between the parity of the (t + N)’th row and t’th
row of the 2-D input sequence. It can be shown
that é.(k,!) can be generated time recursively by
the lattice array I whose lattice module is plotted

in Fig. 2. The fully-pipelined lattice structure for
the 2-D DCT and DSCT is shown in Fig. 3 which
includes one LAI, one LAII, and two circular shift
arrays and shift register arrays.

The circular shift array in the middle of the sys-
tem is an N x 1 shift register array. This special shift
register array loads an N x 1 data vector from the
LAI every N clock cycles, then it shifts the data cir-
cularly and sends the data to the LAII every clock
cycle. There are three inputsin LAII, 6., X.(k,1,1)
and X,(k,!,t), where the §. comes from the circu-
lar shift array, and X,.(k,[,t) and X,(k,l,t) from
the shift register arrays located behind the LAII.
We divide the LAII into two groups: the LAIl yen
and LAIl,q4. Each includes N/2 lattice modules
as shown in Fig. 3. The LAIl.,., contains only
those lattice modules for even transformed compo-
nents k, while LAII,44 contains only the odd lattice
modules. The shift register array contains 2N x N
registers which are used to delay data for N clock
cycles.

We will show how to apply the frame-recursive
concept to obtain the 2-D DCT. Our approach is to
send the input sequence z(m, n) row by row directly
into the LAI. It takes N clock cycles for the LAI
to complete the 1-D DCT of one row input vector,
then the array sends the 1-D DCT data in parallel
to the CSMII as shown in Fig. 3. The circular shift
matrix II (CSMII) is an (N + 1) X N sequential
shift register. At the output of the CSMII, the 1-D
transformed data of the (¢t + N)’th row and t’th row
are added together according to (9) depending on
the sign of the k components (see Fig.3). Then the
results are sent to CSAs. The upper CSA translates
the intermediate value 6.(k,l) to the lattice array
Il.yen, as do the lower CSA except that the signs
of the output of the CSA are changed before being
sent to the lattice array Il,qq. Since LAIl,,., and
LAIl,44 have only N/2 modules, every &, is floating
for N/2 clock cycles. It is noted that a specific 2-
D transform data X.(k,l,t + 1) and X,.(k,l,t +1)
are updated recursively every N clock cycles from
Xc(k,l,t) and X,.(k,I,t). Therefore the outputs of
the LAII are sent into the shift register array (SRA)
where data are delayed by N clock cycles. Each
SRA contains N/2 shift registers each with length
N. The data in the rightest registers are sent back
as the X(k,l,t) and X, (k,l,t) of LAII. At the
N? clock cycle, the 2-D DCT and DSCT of the 0’th
frame are available. After this, the 2-D transformed
data of successive frames can be obtained every N
clock cycles.
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There are many interesting results in this struc-
ture. First, the lattice array can be viewed as a fil-
ter bank. It is because every lattice module itself is
an independent digital filter with different frequency
components | = 0,1,..., N — 1. Moreover, all the
lattice modules in this architecture have the same
structure which is regular, modular, and without
global communication. Second, the system requires
only 2 1-D DCT arrays and is fully pipelined with
throughput rate N clock cycle for frame-recursive
approach. A comparison with existing algorithms is
given in Table 1.

3. APPLICATION TO HDTV SYSTEMS

Most of the 2-D DCT implementations in HDTV
systems are based on the row-column decomposi-
tions methods {5, 6]. Although fast algorithms ex-
ist for the 1-D DCT, the second 1-D DCT cannot
start until all the first 1-D DCTs are completed. To
speed up the operations, one method is to execute
the first 1-D DCT in parallel. For the 8 x 8 case,
there are 8 1-D DCT blocks to perform the first
transform simultaneously. Assuming that each sig-
nal is 10-bit long, in order to to satisfy the precision,
then the total number of bits required in the input
is 640 bits, which is not practical in the circuit re-
alizations. From this point of view, our serial input
2-D DCT system is more practical in hardware im-
plementations. Moreover, if the speed of the circuit
components, such as the ROM and adder, is high
enough, our 2-D DCT system can be executed as
fast as the sample clocking rate.

Although our 2-D DCT implementations are ef-
fective, transforming a video frame of 1080 x 1920

still requires intensive computations. Therefore, we
" designed a 2-D DCT architecture suitable for the
HDTYV system to achieve higher performance. The
block diagram of the 2-D DCT encoder is shown in
Fig. 4, where five 2-D DCT chips are included. Five
chips were used because the ratio of pixel numbers
per line for luminance signal Y and color difference
signals U and V is 4:2:2. As the sampling frequency
of HDTV is very high, the pixels of Y are divided
into four groups, in order to carry out DCT in par-
allel. Additionally, the color difference signal Y and
U are switched alternatively to another DCT coder.
The scanning processor shown in Fig. 4 is used to
divide the signal into four luminance components
and one color difference component. The outputs
of the 2-D DCT transformed data are sent to the
entropy encoder in parallel or through multiplexers.

Since the transform block size is 8 x 8, we divided
the frame into 135 x 240 blocks and 240 channels
as shown in Fig. 5. The 2-D DCT are executed
on each channel whose scanning pattern is shown
in Fig. 5. This scanning pattern reflects the fact
that our system is based on row by row scanning
order and is fully pipelined. Thus, such a scanning
method would maximize the system throughput.

4. CONCLUSIONS

In this paper, we propose a new 2-D DCT algorithm
based on a frame-recursive approach. The resulting
2-D DCT architecture can be obtained by using only
two 1-D DCT arrays, at the same time, the trans-
position procedure is eliminated. It, therefore, does
not have the drawback of the row-column decom-
position method in which a transposition is needed
between the first and the second 1-D DCT. The par-
allel 2-D DCT architecture and the scanning pattern
proposed in Section 3 can process the video data in
real time and eliminate the waiting time in the DCT
codings so that the system performance can be max-
imized. Consequencely, our real-time parallel and
fully-pipelined 2D-DCT structure is very attractive
in high speed transmission systems.
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ABSTRACT

A novel application, selective decompres-
sion, is introduced. It enables to access a
hierarchically coded image and retrieve
that information necessary to decode a se-
lected image portion excluding any other
data. This techniques allows the handling
of large images and provide a solution to
the problems associated with them, name-
ly: storage, excessive transmission delays,
congestion of network resources, and mis-
match between image and screen dimen-
sions.

Technological advances have made availa-
ble large communication bandwidth, large
storage and powerful processing capacities.
However these advances have also spurred
the emergence of very demanding new ser-
vices involving the transfer of such large
data volumes that heavy loads are likely to
be imposed on network and users resources
alike [1]. The strains on network resources
will translate into congestion of resources
and transmission delays even if transmis-
sion occurs over broadbank network such
as ATM based B-ISDN [2]. The strains on
user resources will translate into a shortage
of storage capacity. These new services we
are alluding to center mainly around imag-
ing applications. In the Visual Arts System
for Archiving and Retrieval of Images
(VASARI) project, for example [3], an im-
age database accessible mostly to research

ers is being created. At a planned scanning
density of upt to 250 pixels/inch and with 7
color components per pixel (Red, Green,
Blue, 2 infra-red frequencies, and 2 ultra-
violet frequencies) and 8 bits per compo-
nent, the system has the potential of gener-
ating extremely large image files. A two
square meter painting for example, will
represent more than 12 Gbits of data. Simi-
larly, the "Bibliotheque de France" is an
electronic archival and retrieval system in-

- volving images from the collections of ma-

jor libraries and museums across France.
The Request For Quotes [4] on the system
specifies that the images, scanned in full
color, will have sizes up to 6000 x 8000
pixels leading to a data volume of more
than 1 Gbits when scanned in 24-bit color.
In another example, large engineering
companies and the nuclear industry [3], are
setting-up image distribution systems to
handle their maintenance applications. In a
typical configuration, a central site will
hold all the engineering drawings and doc-
uments, and will be accessed remotely on-
demand. The drawings can be very large.
A common size drawing of 32" by 24", if
scanned at 200 pixels per inch and coded
with 256 gray levels, will lead to a 6400 x
4800 pixels image having a data volume of
more than 234 Mbits.

Note that in the applications just men-
tioned, a user will be faced with an impor-
tant additonal problem, that of a mismatch
between the image and screen dimensions
for most of the "high resolution” displays
readily available have dimensions of about
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1000 x 1000 pixels, a fraction of the di-

mensions of the large images likely to be
handled.

A pragmatic solution to the above prob-
lems may reside in the concept of selective
access : A user, faced with local display/
storage limitations, relatively limited band-
width availability and wishing to display a
portion of a high resolution image, is pro-
vided with the means to access exclusively
the information. relevant to decoding the
image portion of interest. Selective access
on an uncompressed image is trivial but
does not constitute an attrative solution.
Without compression, the source (and the
destination) where the images are stored
will be faced with storage problems and
transmission of the selected data will be
less efficient. Selective access on a com-
pressed image, referred to as selective de-
compression, solve the above problems. It
is however a complex, coder dependent al-
gorithm. In this paper we introduce a sys-
tem in which an image is coded and com-
pressed using a multi-resolution hierar-
chical technique. The compressed image is
transmitted, and at the destination, it is un-
compressed and decoded up to a given in-
termediate level in the hierarchy. This in-
termediate level is selected such as to have
a resolution suitable to the display limita-
tion of the receiver. The user is given the
means to select part of this intermediate
level as an area to be decompressed and
decoded further. Using a simple mathemai-
cal relation, only the coded and com-
pressed information relevant to the selected
area is retrieved from the compressed data
stream at the source and transmitted to the
destination, which will combine it with the
pixels of the selected area to achieve the
requested expansion. This process can be
repeated as needed until the resolution of
the original image is reached.

Section 2 will formalize the selective de-
compression procedure while the equations
for selecting the compressed values rele-
vant to the area of interest to the user are
detailed in section 3 as applicable to the
JPEG proposed standard in its lossless
hierarachical mode [5]. Section 4 will con-

clude by reviewing the advantages of the
selective decompression procedure.

2. Selective Decompression Using a Hier
archical Image Coder

The selective decompression technique is
particularly attractive in association with-
multi-resolution hierarchical coding of im-
ages. This type of coding affords the crea-
tion of a good quality intermediate image
at the decoder, with dimensions adaptable
to those of the receiving display, while
transmitting a relatively small fractionof
the total image compressed data volume.
Further transmission, decompression and
decoding will be done on the basis of an
area of interest defined by the user on the
intermediate image.

The basic sequence of operation is as fol-
lows:

1- An image is scanned at an appropriately
high resolution.

2- The image is coded using a mult-
resolution hierrchical technique to allow
multi-resolution progressive or hierarchical
transmission/decompression/decoding and
itis compressed to reduce its data volume.
3- Multi-resolution progressive transmis-
sion and decompression allow the display
of the decoded image at a user-selectable
lower resolution version of the original im-
age. This lower resolution is in most cases
dependent upon the relative dimensions of
the display screen (or window) at the re-
ceiver and those of the original image.

4- A size and position adjustable window
is scrolled acroos the lower resolution im-
age under user control. Once these parame-
ters are fixed to indicate user designation
of an image portion, they define what is re-
ferred to as a "tile of interest" or a "tile"
(i.e. - a user selected image portion).

5- The parameters of the tile, i.e. size of
the designated image portion and its posi-
tioning relative to a reference point in the
lower resolution image, are transferred
back to the transmission source.

6-Using a mathematical relation, only the
compressed data relevant to the decom-
pression and decoding of the tile of interest
i1s accessed at the source and then trans-
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mitted. At the destination, the decom-
pressed and decoded tile is displayed on
the user's display up to a user-selectable
resolution, or up to the resolution capabili-
ty of the user's display.

7- Steps 4, 5, and 6 can be repeated if the
previous step did not yield the final resolu-
tion for the tile of interest.

This process is illustrated in figure 1 where
selective decompression is repeated twice
before the final image has reached its final
resolution.

3. Mathematical Relation for JPEG's
Hierarchical Lossless Coder

In this section we present the mathematical
relation enabling selective decompression
on an implementation of the JPEG lossless
multi-resolution hierarchical coder as de-
scribed in annex J and annex K of the draft
strandard [5]. Its operation can be summar-
ized as follows :

"An image is encoded in a DPCM-coded
frame followed by a sequence of differen-
tial frames which are two complements dif-
ferences between source input components
4:1 downsampled, and the reference com-
ponents 1:4 upsampled. The reference
components are reconstruct components
created by previous frames in the hierar-
chical process. for either the DPCM-coded
frame or the differential frames, recon-
structions fo the components are generated
as a reference components for a subse-
quent frame in the hierarchical process.”
The DPCM-coded frame and the differen-
tialframes are sent to the Huffman coder
for compression. The compressed image is
then constituted by the Huffman coded
DPCM differential frames (C(i), i=1,..., F).

The mathematical relation in this case is
straightforward. Assume the intermediate
level obtained from the decoding of C(i) to
have vertical dimensions Vi and horizontal
dimensions Hi. The user will define a tile
identified by the coordinates of its upper-
left hand corner and lower right hand cor-
ner (Xtl, Ytl) and (Xt2, Yt2) respectively,
given the following format (horizontal co-

ordinate, vertical coordinate). The values
relevant to the selective decompression
process inlevel C(k), k>i are identified as
follows :

leta=(Vk/V) = (Hk/Hi) and x Im € C(k)

for (1=0; 1<Vk; 1++) {
for (m=0; m<Hk; m++) {
if(a.Ytl <=1<=2a.Yt2) &&
(a.Xtl <=m <= a.X12) select xjp, € C(k);

else reject xm € C(k)

}

An overbar refers to rounding up to the
nearest integer value.

4. Conclusion

We have introduced in this chapter an al-
gorithm allowing decompression of a user
selectable portion of a compressed image.
This technique was demonstrated in associ-
ation with the lossless hierarchical coder
described in chapter two. The user is first
sent the necessary information to display a
subsampled version of the image. The res-
olution of the subsampled image is gener-
ally determined by the resolution of the
display. On the subsampled image, the user
selects a portion of the image to be decom-
pressed further. Given the coordinates of
the selected portion relative to the upper
left hand corner of the subsampled image,
the algorithm is able to select from the
compressed data of the whole image, only
what is necessary to decode the selected
portion.

Aside from the fact that the proposed se-
lective access scheme provides a practical
solution to the problem of the mismatch
between original image resolution and
screen resolution, it also allows for a sub-
stantial bandwidth and storage savings by-
avoiding the transmission of unwanted
data. Consequently, decoding time and
user resources have also been saved. The
savings can be seen from the selective de-
compression example of an image,
"church", 1855 x 2350 pixels 8bits/pixel.
Should all the compressed image been
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transmitted, it would have represented a
data volume of 12.39 Mbits, requiring
more than 22 minutes of transmission over
a 9600 bits/second modem. The receiver
would also have had to solve the problem
of creating storage space for the uncom-
pressed image representing 33.26 Mbits of
data. Using selective decompression, a user
can first decompresse the image up to di-
mensions 232 x 294 pixels then zoom on a
499 x 400 pixels area at the original resolu-
tion in 2 steps as in figure 1. The total vol-
ume transmitted is 699 kbits in 1 minute
and 15 seconds over a 9600 bits/second
modem. All the images used can very well
fit on a VGA screen.
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ABSTRACT

There appears to be considerable motivation to investigate signal
adaptive subband systems in which the polyphase transfer matrix
is paraunitary, for application to still and motion image coding.
This paper proposes a method of optimizing the filter coefficients
of such systems using a mean-squared-error criterion. We have
developed an efficient algorithm for locating numerous local op-
tima in the coefficient space, permitting a degree of confidence
in the location of globally optimal or near optimal solutions. We
investigate both separable systems and a particular class of non-
separable filter systems. The application of our algorithm to a
number of images is described.

1. INTRODUCTION

Subband coding schemes have been proposed for image and video
coding applications [1]. In addition, filter-decimate-interpolate
schemes, which may be regarded as subband coding systems in
which only one subband is kept, are the key element in pyramid
coding schemes which have been proposed for ATV [2]. To date,
however, comparatively little effort has been directed to signal
adaptive systems of this form. In this paper our objective is to
design subband filters which concentrate as much of the signal
energy as possible in a single subband of a perfect reconstruction
subband system with paraunitary polyphase transfer matrix{3].
The motivation for this objective is outlined in section 3. We
concentrate on adapting relatively small filters and finding global
optima. Particularly in this regard our approach differs from the
work of Delsarte, et al. [4], who seek only a single locally optimal
filter. The adaptation depends only on the second order statistics
of the input signal and so may just as easily be applied to a class
of signals as to a single signal. We consider both separable and
non-separable two-dimensional systems, however computational
constraints prevent us from applying our optimization algorithm
to very general non-separable systems.

In outline, after demonstrating the motivation for our investi-
gations in section 3, we summarize the equations and algorithmic
features of our adaptation strategy in section 4. Some illustrative
results are presented in section 5. :

2. NOTATION

We denote sequences by (-) and sets by {.}. {(2Z) is the Hilbert
space of square-summable sequences with the 2-norm denoted by
|t-||. We write span{v;} for the smallest Hilbert space contain-
ing the vectors v;. We adopt the usual notation F'(z) for the
z-transform of a filter, F,whose impulse response is (f(n)). We
define a filter with impulse response {f(n)) to be N-orthogonal if
{{f(n — Nk))}x is an orthogonal set of vectors in i*(Z). By an
invertible filter, we mean a filter with stable impulse response,
{f(n)), where F(z) has no zeroes on the unit circle - note {f(n))
and the impulse response of its inverse, (f~1(n)), must satisfy

*This work was supported by National Science Foundation
PYI award MIP-9057466. David Taubman was partially sup-
ported by a traveling scholarship from the University of Sydney,
Australia.

f* f~1 = (§(n)) and may be two-sided in general. We signify
the average over the sequence elements of f = (f(n)) as ¥. Fi-
nally, a matrix of transfer functions, E(zy,...,2s), is said to be
paraunitary if B(z1,...,2a)BT (27}, ..., 221) = I {1, p 91].

3. MOTIVATION

In this paper we describe a signal adaptive technique for sub-
band systems which have paraunitary polyphase transfer matri-
ces, in which we optimize the analysis filters so as to maximize
the energy in one of the subbands. In this section we make two
observations, providing the motivation for this choice of system
and optimization objective.

To begin with, consider the scheme outlined in Figure 1, which
arises as a component of pyramid coding schemes as proposed for
ATV coding [2}, for example.

<) ~[F (1T o)~} s

Figure 1: Filter-Decimate-Interpolate Scheme

If we are given filter G, it is natural to enquire how F must

be chosen so that ||z — Z|| is minimized. However, noting that
the linear operator T : 2(Z) — [2(Z), defined by T(z) = %,
depends only on G, having range space span{{g(n — 2k))}x, our
question may be recast as: “How must F' be chosen so that
T is a projection operator onto its range space?” It has been
shown that T is a projection whenever the system of Figure 1 is
one of the two branches of a two-channel perfect reconstruction
system with paraunitary polyphase transfer matrix (5]. Our first
observation is, essentially, that this is necessarily the case. The
proof is included in the Appendix.
Observation I If F and G are FIR in the system of Figure 1
then T is a projection operator <<= F and G belong, to within a
scale factor, to a two-channel FIR perfect reconstruction system
with paraunitary polyphase transfer matriz. In this case G is
2-orthogonal.

The above observation implies that every pair of FIR filters F
and G for which T is a projection arise, to within a scale factor,
as one of the branches of some two-channel perfect reconstruction
system with FIR paraunitary polyphase transfer matrix.

Our second observation concerns subband coding. We consider
the perfect reconstruction system of Figure 2 with FIR parau-

AFA{T]- i)~ (2] (G0} 260
n)
MEa -] e - [12-[¢@]- 220

Figure 2: Two Channel Perfect Reconstruction Scheme

nitary polyphase transfer matrix. In the light of Observation I,
then, T and T, given by T(z) = & and T(z) = £2, must be
projection operators onto orthogonal subspaces of 12(2). For
simplicity we quantize y; and y2 with the same uniform quan-
tizer with quantization interval A and obtain 114 = v1 + 01

X
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and y2q = y2 + g2 where y14,y2, are the quantized subband
sequences and ¢;,q2 are the quantization errors. We will as-
sume that y; and y; are wide sense stationary ergodic random
processes, uncorrelated with g1 and g, respectively, the latter
having uniform distributions. Then, noting that {{g{n — 2k))};
and {(g(n — 2k))}x are orthonormal sets of vectors spanning or-
thogonal subspaces of {2(Z), we have

7= Leuh+ By = 2.
21 2 12
2= -] +43) and T =0
If the sample rate of z is normalized to 1 so that y; and y2
have normalized sample rates of % then, applying the naive 4~ ¢
rule! to the coding of y1, and y;, we obtain an overall bit rate

[N

of
1 g, | EVEBIT LY o, | 8VEE]
2 &2 A &2 A
1, 212242
~21082 X

Since E + ;g- = 22 is constant for a given signal, z, minimizing
y? y2 corresponds to maximizing, or equivalently minimizing, y?.
We have:

Observation II In the subband system of Figure 2 with pa-
raunitary polyphase transfer matriz, the bit rate is optimized by

marimizing, or equivalently minimizing, y? Jor a given input x.

y'f, then, becomes the objective function for our signal adap-
tive algorithm of section 4.

Observations I and II provide a common motivation to op-
timize perfect reconstruction filter systems with paraunitary
polyphase transfer matrices so as to maximize the energy in a
single subband, y; .

4. ADAPTATION OF TWO-DIMENSIONAL
SYSTEMS

Although we discussed only one-dimensional systems in section 3,
the motivation derived therein applies also to two-dimensional
systems of the form shown in Figure 3 in which D is a decima-
tion matrix with determinant of 4 and the sequences are two-
dimensional.

z{ny,nz) —*—*—' vt —'—>-" #1(n1,n2)

Figure 3: 2-D Filter-Decimate-Interpolate Scheme

In polyphase form the paraunitary analysis system equations
may be written as

P(21,22) = E(21,22)X (21, 22) (1)

where § = (yl,yg,ys,m)T is the vector of subband sequences,
E(2;,22) is the 4x4 paraunitary polyphase transfer matrix and

# = (200,201,210, 211)7 is a vector of subsequences of z where
each subsequence, z;;(ny, n2), is given by

zigmna) =2 (D (7 ) = (] ) eriiefon

When E and D are separable F} is separable and so the ap-
plicability of the one-dimensional results is clear. When E is a
separable matrix, the one dimensional results are also directly
applicable, even when D and hence Fj are not separable, be-
cause it is always possible to reorganize the sequence z(nj, n2)
s0 that we need only consider D = 2I.

We now describe our optimization equations and algorithm.

1In the 4 ~ ¢ rule we hard-limit the signal to within + 4
standard deviations before quantizing

4.1. The Equations
We wish to adapt the analysis system of equation (1) so as to

maximize y} . Clearly this involves optimization of both the dec-
imation matrix, D, and the polyphase transfer matrix, E. As
noted above, however, we can always reorganize the sequence z
so that the decimation matrix can be taken as D = 21 for the
purpose of optimizing E. In this way we are able to concentrate
on the optimization of E, leaving that of D for future investiga-
tion.

We would like to consider cascade structures of the form
E(21,22) = HyA(21,22)Hy_1 - A(21,22)H;. (2)

A(zy,22) = diag(l,zl‘l,z;’,zj_lzg'l) and H;,..., Hy are 4x4
orthogonal coefficient matrices, leading to a paraunitary system
with 6N degrees of freedom. It is straightforward to see that E
is a separable paraunitary FIR polyphase transfer matrix if and
only if it satisfies equation (2) with each Hy, of the form

C°ncﬂ- —c"»sﬁ -S"ncﬁn S“-Sﬁn

H, = cﬂnsﬁ- c“ncﬁ: ‘S“nsﬂu -—Sa,‘Cp'
n= Sancﬁ; —SGu SBn CQ‘C’” -Caﬂsﬁn
San Sﬁ» an VB, Ca» sﬁn Can Cp-

with Ca, and S,, standing for cos on and sinan etc. The sep-
arable case, then, is characterized by 2N degrees of freedom.
From equation (1) we immediately write down Yj(zy, 22) =

Ey 1 (21, 22) Xoo(21,22) + - - - + E1,4(21, 22) X121 (21, 22) and s0 32
depends only on the first row of E and the second order statistics

of z. In fact, from equation (2), y? is a trigonometric polyno-
mial in the 6N rotation angles whicflx characterize the orthogonal
matrices Hy, ..., H;, the coefficients of this polynomial being
determined by the second order statistics of the two-dimensional
signal, z. These statistics may be evaluated for a particular sig-
nal or for a class of signals. In numerical work the trigonometric
polynomial itself is generated symbolically for a given size filter.

4.2. The Algorithm

It is well-known that the optimization of filter systems is quite
dependent on an “initial guess” for numerical convergence. It is
common to start with an unconstrained filter designed to sat-
isfy desirable frequency response specifications and then perform
a constrained numerical optimization. Such a technique is not
well suited to the signal adapted optimization problem at hand.
Delsarte, et al. {4] find a single local optimum using a fixed start-
ing point for a one-dimensional signal adaptive subband system
with paraunitary polyphase transfer matrix. Their objective is

identical to ours - to maximize y§ . Our approach, however, is to
pursue a globally optimal filter system.

We have already noted that the objective function is a trigono-
metric polynomial in, say, R degrees of freedom (angles). The
local optima, then, are a subset of the set of zeroes of the gra-
dient of this function - i.e. the common zeroes of the set of R
trigonometric polynomials corresponding to each of the partial
derivatives of this objective function. As such, homotopy meth-
ods {6] could in theory be used to find all local optima and hence
the global optimum. The astronomical number of such common
zeros, mostly complex-valued, however, render such an approach
impractical.

Our optimization technique involves collecting local optime
from the R — 1 dimensional problem derived by holding the R't}
angle fixed at each of, say, M values from some fixed grid. 2
numerical tracking algorithm is then applied to each of thes:
solutions in order to find a set of R dimensional local optima.

The tracking algorithm allows us to move from a local opti-
mum in the R — 1 dimensional problem, derived by holding the
R'th angle fixed, to a local optimum in the full R angles. It
involves tracking the R — 1 dimensional local optimum as the

R'th angle is stepped so as to increase the objective function, y?
Tracking involves prediction and step size adaptation to maxi
mize efficiency and incorporates many measures to avoid losin
the path of local optimain R—1 dimensions. A Newton-Raphso:
technique is used to stay on this path and also to converge to th

111-214




full R dimensional solution once the gradient vector becomes suf-
ficiently small.

The recursive approach outlined has two noteworthy advan-
tages: First it is easy to guarantee that we converge no more
than twice to any given local optimum. The tracking of a so-
lution in R — 1 variables as the R'th variable is moved, is what
allows us to avoid converging to the same local optimum again
and again — a serious problem with naive multi-start algorithms.
It is this same feature (tracking) which allows homotopy methods
to arrive at all local optima exactly once. The other key advan-
tage of our algorithm over naive multi-start approaches is the
fact that most of the work is done in solving lower dimensional
problems, where numerical complexity is much lower. There is
also an efficient way to derive the R — 1 dimensional objective
function from the R dimensional objective function. In this way
we converge to numerous distinct local optima. The confidence
with which we find a globally optimal solution depends on the
size of M and hence on the time we are prepared to spend in
optimization.

5. RESULTS

In experimental work we have optimized separable filters for
N < 7. The object in our experiments was to compare the per-
formance of the adapted filters with a non-adaptive approach.
The experimental context is shown in Figure 4, which may be
viewed as a pyramidal subband decomposition structure with L
levels, in which all but one of the 4% branches have been dis-
carded. Although this is not in itself a useful scheme for image
compression, it allows a qualitative evaluation of the benefits of
filter adaptation. The separable fixed filters with which we com-
pared our adapted filters were taken from [7]. As discussed in
section 4, we always use D = 21 for this work.

z yl,(l)"'yl,(L-—l)yl,(L)

Figure 4: Experimental Context

The numerical results tabulated indicate the energy captured
in sequence y; (j) with the energy in the original sequence, z,
normalized to 1. The “fixed” values were generated by applying
the appropriate filters from (7] and keeping the subband with the
most energy at each stage. The “adapted” values were generated
by using individually adapted filters at each stage.

The result of applying our algorithm to the carpet texture of
Figure 5 is shown in table 1. As seen, the adaptive algorithm
improves the energy compaction at the third level by 60 percent.
Figure 6 shows the magnitude response of the row filter used to
generate y; (3), which is clearly distinct from either a high- or
low-pass filter — the only choices in a non-adaptive system. We
observed similar performance in other highly regular textures.
For example, when applied to the 128x128 image of a brick wall
in perspective, energy compaction at the third level improves
by 70 percent - see table 2. As expected, the same effect was
observed on an artificially generated sinusoidal grating with 45°
orientation and frequency of 0.5 rad/pixel - see table 3. On
complex images, however, the signal-adapted filters only slightly
outperformed the fixed filters.

The general trend with images in which the adaptation did
have a significant effect was that the adaptive filters would per-
form similarly to the fixed filters at each stage, !, until some
point at which we would notice a considerable difference. This
transition point is easily understood as the point at which regu-
lar features in y; (;_1) may be captured by the relatively small
region of support of the filters. The transition was seen to occur
for lower values of | when the filter sizes were increased, exactly
as one would expect, leading to the obvious conclusion that we
should adapt filters with as large a support as possible.

In non-separable work we considered only the case in which

1,...,HxN_1 in equation (2) are separable matrices and H 5
is non-separable. Only three of the six angles which characterize
Hy need affect its first row and hence the first row of E, and
hence y;, from equations (1) and (2). In this way we have 2N +1

angles in the objective function for yf, only one more than the

Table 1: Separable Filter Results for “Carpet” Texture

Il N Sizeofy ) - yf'(‘) (fixed) yf'(‘) (adapted)
T 6 262x262 08711 0.8879 |
2 6 137x137 0.5270 0.6095

3 6 74x74 0.2879 0.4582

Table 2: Separable Filter Results for Brick Wall in Perspec-
tive

I N Sizeofy yf'(,) (fixed) yi(‘) (adapted)

16 70x70 0.4496 0.5031
2 6 41x41 0.1780 0.2715
3 7 27x27 0.0877 0.1498

2N of the separable case. Note that the fact that three of the
angles which characterize Hjy do not affect y; means that these
can be independently adjusted to optimize y2, ¥3, y4 in a full sub-
band system. Experimental results were obtained for these non-
separable filters with N = 4. We found optimization of larger
filters, with any confidence of being close to a global optimum,
to be prohibitive due to computational complexity.

It was observed that non-separable filters barely outperformed
their separable counterparts, which we attribute to the fact that
we were only able to optimize 2N + 1 degrees of freedom, just
one more than in the separable case, rather than the full 6N
of equation (2). Even on images with distinctly non-separable
spectra, non-separable features were observed only outside the
passband of the adapted filters.

6. CONCLUSIONS

There is strong motivation in image coding applications to adapt
the parameters of perfect reconstruction subband systems with
paraunitary polyphase transfer matrices to a given signal or class
of signals. Our experimental results indicate that adaptable sep-
arable filters result in significant energy compaction for images
of a highly regular nature. In order to allow orientational tuning
with a separable polyphase trarsfer matrix it should also be im-
portant to adapt the decimation matrix to optimize the second
order statistics of the vector # in equation (1) prior to adapting
the 2N angles which characterize a separable matrix, E. This
phase of our research into adaptive filter-decimate-interpolate
schemes remains to be investigated.

REFERENCES

[1] Subband Image Coding, John W. Woods Editor, Kluwer Aca-
demic Publishers, 1990.

[2] K. Metin Uz, Martin Vetterli, and Didier J. LeGall. “Inter-
polative Multiresolution Coding of Advanced Television with
Compatible Subchannels,” JEEE Transactions on Circuits
and Systems for Video Technology. Vol 1, No 1, March 1991.
Pp 86-99.

[3] R. Rinaldo, D. Taubman and A. Zakhor. “Applications of
Multi-Resolution Analysis to Images,” Seventh Workshop on
Multidimensional Signal Processing. September 1991, Lake
Placid, New York.

Philippe Delsarte, Benoit Macq, and Dirk T.M. Slock. “Ef-
ficient Multiresolution Signal Coding via a Signal-Adapted
Perfect Reconstruction Filter Pyramid,” Proceedings of the
International Conference on ASSP, Toronto 1991. pp 2633-
2636.

(4

—

Table 3: Separable Filter Results for Sinusoidal Grating

I N Sizeof yy yf'( N (fixed) yi(!) (adapted)
1 4 260x260 0.9985 0.9994
2 4 134x134 0.8883 0.9950
3 4 T1x71 0.6840 0.9808
4 4 39x39 0.6478 0.9696
5 6 25x25 0.2969 0.7405

II1-215



vl « T

s

R AR

S N

=
7 53 M‘\“‘ SR

-
.
Ry

£

ok
-

R

L
=

S ;‘“Qgﬁd??s@.',,» R
L S
Y Y

o I/’ & s ﬁ‘t‘{ﬁ’"‘!

RE2 %I‘.» : frf’z‘x '

Figure 5: “Carpet” Texture (512x512 pixels)
Magnitude Response

|
|
|
1

Figure 6: Adapted Row Filter for “Carpet” Texture

[5] Olivier Rioul and Martin Vetterli. “Wavelets and Signal Pro-
cessing,” IEEE Signal Processing Magazine. Vol 8, No. 4,
October 1991. pp 14-38.

(6] L T Watson and R T Haftka. “Modern Homotopy Methods
in Optimization,” Computer Methods in Applied Mechanics
and Engineering. Vol 74. Sept. 1989.

[7] Ingrid Daubechies. “Orthonormal Bases of Compactly Sup-

ported Wavelets,” Communications on Pure and Applied
Mathematics. Vol 41. 1988. pp 909-996.

A APPENDIX

We prove the observation stated in section 3. To see this, consider
the following theorem, which is important in itself as it is not
restricted to FIR filters:

Theorem Given the invertible filler, G, there ezists a unique
filter, F, such that T is a projection operator onto its range
space. Moreover, if G(2)G(z71) + G(-z)G(—z"") # 0 on the
unit circle then F is given by

G(z"1)

F&) = Tia@6G1) + G-2)G(— )]

3)

Proof:

Observe that for input (6(i)) we get F({(5(i))) = (f(n)) and so
we must have

G™H(T((8(:)))(2n)
GTHT((8( + 1))))(2n) (4)

demonstrating the existence and uniqueness of F.
All we need now is an orthonormal basis for T(1?(2)) and the
determination of F from equation (4) is then straightforward.

f(2n)
and f(2n+1) =

We will demonstrate such a basis, {uk}x with ux = (uk (1)) =
(uo (i — 2k)) or, equivalently,

Uo(z)Uo(2™1) + Uo(—2)Uo (-z~")=2

Noting that ug € T(I?(2)) = span{(g(n — 2k))}k, we need
only find a stable sequence (a(n)) satisfying

o 2
A)ACT) = GHGHT) + G=G(—=) ©
and then put

o= (o(n-2al)) = Uo(z) = A*)GG)
1

If G(z) is a rational polynomial in z then G(z)G(z7') +
G(~z)G(—z"1) is a rational polynomial in z? and so A(z) may
be found by spectral factorization. Using this orthonormal basis,
ug = El(g(n — 2k — 21))a(l), we obtain

TEENM) = Y 9(~2k = A)gln = 2k = 2m)ala(m)
k,l,m
= G((v(?))
where
y(2i +1) = 0 and y(2i) = Za(l)a(m)g(—m' +2m —2l)
L,m
— f(2n) = Z a(l)a(m)g(~2n + 2m — 21)
Im

Similarly we find the odd subsequence of (f(n)) by considering
T((6(i + 1))) and, combining, we obtain

f(n) = Ea(l)a(m)g(—n+2m—21)
t,m
= F(z) = A(P)A(E?)G(ET) (6)

Equations (5) and (6) yield the result — equation (3). O

In the FIR case, simple manipulation of equation (3) yields:
Corollary If G is an invertible FIR filter and T is a pro-
jection operator then F is an FIR filter <= G(Z)G(Z—l) +
G(-2)G(—z"1) is a constant - i.e. G is 2-orthogonal.

We now demonstrate that G 2-orthogonal is equivalent, to
within a scale factor, to requiring G to be one of the synthe-
sis filters of a two-channel perfect reconstruction system with
paraunitary polyphase transfer matrix — see Figure 2. For, if
Go(z) and Gj(2) are the polyphase components of G(z) - ie.
go(n) = g(2n) and g1(n) = g(2n — 1) - then Go and G, are
power complementary filters because

Eg(i)g(s‘ - 2k)

3 lg0(i)s0i = k) + 91()a (i = #)]

AS(K)

I

for some constant A. Then, setting

Go(z) = -G1 (z~) and Gi1(2) = Go(z71) (7)
it is clear that the matrix
1 ((Gole) Gotd) )
VA \ Gi(z) Gi(2)

is an FIR paraunitary polyphase matrix. Let Go and Gy, de-
fined in equation (7), be the polyphase components of filter G in
Figure 2 and scale all filters by j: Then, with F(z) = G(z™Y)
it is easily verified that the two branches of Figure 2 project =
onto orthogonal subspaces and hence #; + £2 = z. So we have
a perfect reconstruction subband system with FIR paraunitary
polyphase transfer matrix.
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