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Preface.

. Reissue of
Encyclopedia of Physics / Handbuch der Physik, Volume VIia

The mechanical response of solids was first reduced to an organized science of fairly
general scope in the nineteenth century. The theory of small elastic deformations is in
the main the creation of Caucny, who, correcting and simplifying the work of Navier
and Porsson, through an astounding application of conjoined scholarship, originality,
and labor greatly extended in breadth the shallowest aspects of the treatments of par-
ticular kinds of bodies by GaLiLeo, LeieNiz, James Bernoutri, Parent, Damisr Ber-
NouLL, EuLer, and Couroms. Linear elasticity became a branch of mathematics, culti-
vated wherever there were mathematicians. The magisterial treatise of Love in its
second edition, 1906 - clear, compact, exhaustive, and learned - stands as the summary
of the classical theory. It is one of the great “gaslight works” that in Bocuner’s words!
“either do not have any adequate successors] ... or, at least, refuse to be super-
seded ...; and so they have to be reprinted, in ever increasing numbers, for active
research and reference”, as long as State and Society shall permit men to learn mathe-
matics by, for, and of men’s minds. '

Abundant experimentation on solids was done during the same century. Usually the
materials arising in nature, with which experiment most justly concerns itself, do not
stoop easily to the limitations classical elasticity posits. It is no wonder that the investi-
gations Love’s treatise coliects, condenses, and reduces to symmetry and system were
in the main ill at ease with experiment and unconcerned with practical applications. In
Love’s words, they belong to “an abstract conceptual scheme of Rational Mechanics”.
He concluded thus his famous Historical Introduction:

The history of the mathematical theory of Elasticity shows clearly that the develop-
ment of the theory has not been guided exclusively by considerations of its utility for
technical Mechanics.- Most of the men by whose researches it has been founded and
shaped have been more interested in Natural Philosophy than in material progress, in
trying to understand the world than yp.erying fo.make 1t more comfortable. From this
attitude of mind it may possibly beve.resairess weag mg theory has contributed less to
the material advance oty manking-tRgaep mygnt otgsresy have done. Be this as it may,
the intellectual gain which has acayed trom the workept Ypese men must be estimated
very highly. The discussions that haye taken-place -concerging the number and mean-
ing of the elastic constants have thomwa 1tnt op most r&ondite questions concern-
ing the nature of molecules §nd the TW6de ot t ir 1nteraguon. The efforts that have
been made to explain Zrtlcalv,pncnomcna by means‘of+ghe hypothesis of 2 medium
having the same physical chardiger agfp ZHYIE sghd bogy led in the first instance, to

!Saromon Bocunex: “Einstein between Temtupwash, ®ce Umv Stud. 65 (3), 54 (1979).
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the understanding of a concrete example of a medium which can transmit transverse
vibrations, and, at a later stage, to the definite conclusion that the luminiferous
medium has not the physical character assumed in the hypothesis. They have thus
issued in an essential widening of our ideas concerning the nature of the aether and
the nature of luminous vibrations. The methods that have been devised for solving the -
equations of equilibrium of an isotropic solid body form part of an analytical theory
-which is of great importance in pure mathematics. The application of these methods
to the problem of the internal constitution of the Earth has led to results which must
influence profoundly the course of speculative thought both in Geology and in cosmi-
cal Physics. Even in the more technical problems, such as the transmission of force and
the resistance of bars and plates, attention has been directed, for the most part, rather
to theoretical than to practical aspects of the questions. To get insight into what goes
on in impact, to bring the theory of the behaviour of thin bars and plates into accord
with the general equations - these and such-like aims have been more attractive to
most of the men to whom we owe the theory than endeavours to devise means for
effecting economies in engineering constructions or to ascertain the conditions in
which structures become unsafe. The fact that much material progress is the indirect
outcome of work done in this spirit is not without significance. The equally significant
fact that most great advances in Natural Philosophy have been made by men who had
a first-hand acquaintance with practical needs and experimental methods has often
been emphasized; and, although the names of Green, Poisson, Cauchy show that the
rulé is not without important exceptions, yet it is exemplified well in the history of
our science.

Love's treatise mentions experiment rarely and scantly. Its one passage concerning ex-
periment in general, § 63, in effect warns its reader to have a care of experimental data
because of their indirectness.

In an irony of history the ever-increasing use of mathematical notation in physical
science, to the point that now often works on experiment are dominated by their
authors’ seemingly compulsive recourse to mathematical formulae interconnected by
copied or adapted bits of old mathematical manipulation, LovE’s treatise is sometimes
in reproaches upon modern “pure” or “abstract” researchers held up as a model of prac-
tical, applied theory. '

Experiment on the mechanical properties of solids became in the later nineteenth
century a science nearly divorced from theory. Nevertheless, no great treatise on ex-
periment fit to be set beside Love's on theory ever appeared. Even such books of ex-
periment as were published seem to have in the main taken positions either domi-
nated by theory, usually crude, verbose, and ill presented, or flatly opposed to theory.

The modern reader will cite as objections against the foregoing coarse summary
many individual masterpieces that do not support it: brilliant comparisons of theory
with experiment by St. VenanT, independent experiments of fundamental importance
by WertaeM, Cauchy's marvellously clear mathematical apparatus for conceiving
stress and arbitrarily large strains and rotations, theories of internal friction and plas-
ticity proposed by Boirzmany, St. VENANT, and others. If he is searching for ante-
cedents of what has happened in the second half of the twentieth century, he is
abundantly right in citing these and other achievéments of the nineteenth while pass-
ing over the work of the ruck, but in that century’s gross product of solid mechanics
they are exceptions that prove rules.
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In planning this volume on the mechanics of solids for the Encyclopedia of Physics 1
designed
1) To provide a treatise on experimental mechanics of solids that, not dominated by

mathematical theory and not neglecting the work of the eighteenth and nineteenth

centuries in favor of recent, more popular, and more costly forays, should be com-
parable in authority, breadth, and scholarship with Love's.

2) To provide treatises on basic, mathematical theory that would stand at the level of
Love’s while in their own, narrower scope supplanting it by compact and efficient
development of fundamentals, making use of modern, incisive, yet elementary
mathematics to weave together old and recent insights and achievements.

3) To illustrate the power of modern mathcmatical theory and modern experiment by
articles on selected topics recently developed for their intellectual and practical im-
portance, these two qualities being closer to each other than to some they may
seem.

I encouraged the authors to meet the standard established by Love in just citation
and temperate respect for the discoverers.

The reader will be able to form his own judgment of such success and failure as did
accrue,

On the first head, experiment in general, the reader will find the treatise by Mr.
Beui, filling all of Part 1. While it is not primarily a historical work, the historian S. G.
BrusH pronounced it in 1975 “the most important new publication by a single author”
on the history of physics.

On the second head, the reader should not expect to find the basic ideas of solids
treated #b movo or in isolation. The general and unified mechanics of Eurer and
CaucHy, in which fluids, solids, and materials of other kinds are but i.stances, has
come into its own in our day. No wise scientist now can afford to shut out solids
when studying fluids or to forget the nature and peculiarities of fluids when studying
solids. The two are but extreme examples in the class of systems comprised by me-
chanics. Articles in Parts 1 and 3 of Volume III of the Encyclopedia: The Classical Field
Theories and The Non-Linear Field Theories of Mechanics, are cited so often by the authors
writing in Volume Vla as to make it fatuous to deny that they provide the basic con-
cepts, structures, and mathematical apparatus for the articles on theoretical mechanics
of solids. In particular The Non-Linear Field Theories goes into such detail regarding
large mechanical deformation as to allow most of the text in Volume Vla to concen-
trate upon small strain.

This much understood, we see that while Mr. BeiL’s volume provides, at last, a
monument of exposition and scholarship on experiment, the articles by Messrs.
GurtiN, CarisoN, FicHera, NacgHDi, ANTMAN, and FisHEr & LeirMaN, by Mrs.
GEIRINGER, and by Mr. TinG together provide a modern treatise on mathematical theo-
ries of the classical kinds. The survey of theories of elastic stability by Messts. Knops
& WiLkss, now justly regarded as the standard reference for its field, necessarily con-
siders deformations that need not be small.

Coming finally to application, in which theory and experiment complement one
another, the reader will find major examples in the articles by Messrs, Cuen; Nunzia-
10, WaLsH, ScuuLer and Barxer; and THurston. Many more topics of application
might have been included. I regret that I could not secure articles about them. The
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most serious want is a survey of applications of linear elasticity to problems of intrin-
sic or applied interest that have arisen in this century and that illustrate the power of
new mathematical analysis in dealing with special problems. A long article of that
kind, a veritable treatise, was twice contracted and twice defaulted. Fortunately the gap
thus left has been abundantly and expertly filled by Mr. ViLLAcGio, Qualitative Methods
in Elasticity, Leyden, Noordhoff, 1977.

Baltimore, December, 1983 C. TRUESDELL
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The Linear Theory of Elasticity.

By
MorTtoN E. GURTIN.

With 18 Figures,

Dedicated to EL1 STERNBERG.

A. Introduction.

1. Background. Nature of this treatise. Linear clasticity is one of the more
successful theories of mathematical physics. Its pragmatic success in describing
the small deformations of many materials is uncontested. The origins of the
three-dimensional theory go back to the beginning of the 19th century and the
derivation of the basic equations by CAUCHY, NAVIER, and PoissoN. The theo-
retical development of the subject continued at a brisk pace until the early 20th
century with the work of BELTRAMI, BETTI, BoUsSINESQ, KELVIN, KIRCHHOFF,
LAME, SAINT-VENANT, SOMIGLIANA, STOKES, and others. These authors established
the basic theorems of the theory, namely compatibility, reciprocity, and un-
iqueness, and deduced important general solutions of the underlying field equations.
In the 20th century the emphasis shifted to the solution of boundary-value prob-
lems, and the theory itself remained relatively dormant until the middle of the
century when new results appeared concerning, among other things, Saint-Ve-
nant’s principle, stress functions, variational principles, and uniqueness.

It is the purpose of this treatise to give an exhaustive presentation of the
linear theory of elasticity.! Since this volume contains two articles by FICHERA con-
cerning existence theorems, that subject will not be discussed here.

1 have tried to maintain the level of rigor now customary in pure mathematics.
However, in order to ease the burden on the reader, many theorems are stated
with hypotheses more stringent than necessary.

Acknowledgement. I would like to acknowledge my debt to my friend and teacher, Eu
STERNBERG, who showed me in his iectures? that it is possible to present the linear theory in
a concise and rational form —a form palatable to both engineers and mathematicians. Portions
of this treatise are based on STERNBERG’S unpublished lecture notes; I have tried to indicate
when such is the case. I would like to express my deep gratitude to D. CARLSON, G. FICHERA,
R. HumLGot, E. STERNBERG, and C. TRUESDELL jor their valuable detailed criticisms of the
manuscript. I would aiso like to thank G. BENTHIEN, W. A. Dav, J. ErickseN, R. Kvops,
M. OLiver, G. pE LA PENHA, T. RaLstoN, L. SoromoN, E, WaisH, L. WHEELER, and
W. WiLLIAuS for valuable comments, and H. Z1EGLER for generously sending me a copy of

1 Specific applications are not taken up in this article. They will be treated in a sequel by
L. SoLoMoN, Some Classic Problems of Elasticity, to appear in the Springer Tracts in Natural
Philosophy.

2 At Brown University in 1959-1961.
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PRANGE’S 1916 Habilitation Dissertation. Most of the historical research for this treatise was
carricd out at the Physical Sciences Library of Brown University; “vithout the continued sup-
port and hospitality of the staff of that great library this research would not have been pos-
sible. Finally, let me express my gratitude to the U.S. National Science Foundation for their
support through a research grant ta Carnegie-Melion University.

2. Terminology and general scheme of notation. I have departed radically
from the customary notation in order to present the theory in what I believe to
be a form most easily understood by somecne not prejudiced by a pastacquaintance
with the subject. Direct notation, rather than cartesian or general coordinates, is
utilized throughout. I do not use what is commonly called “dyadic notation”;
most of the notions used, e.g. vector, linear transformation, tensor product, can
be found in a modern text in linear algebra.

General scheme of notation.

Italic holdface minuscules @, b,u, v ...: vectors and vector fields; x, y, 2, §, ...:
points of space. .

Italic boldface majuscules A, B, ...: (second-arder) tensors or tensor fields.

Italic lightface letters A, a, a, D, ...: scalars or scalar fields.

C, K: fourth-order tensors. . ]

Sans-sersf boldface majuscules M, N ... (except C,K): four-tensors or fields with
such values.

Sans-sersf boldface minuscules u, §, ...: four-vectors or four-vector fields.

Tialic lighiface majuscules B, D, X, ...: regions in euclidean space.

¥ a group of second order tensors. :

Seript majuscules €, &, ... (except ¥): surfaces in euclidean space.

Italic sndices 4, {, ...: tensorial indices with the range (1, 2, 3).

Greek indices a, f, ...: tersorial indices with the range (1, 2).

Index of frequently used symbols. Only symbols used frequently are listed. It
has not been possible to adhere rigidly tc these notations, so that sometimes

‘within a single section these same letters are used for quantities other than those
listed below.

Symbol Name ’ - Place of definition
or first occurrence
A(m)  Acoustic tensor © 244
A Beltrami stress function : 54
B Body 14
Cc Elasticity tensor 68
Dy Set of points of application of system I of
concentrated loads 179
E Strain tensor 31
E Traceless part of strain tensor 78
E(B) Mean strain 37
é Three-dimensional euclidean space 5
& =& X (—o0, 00) =space-time 27



Sect. 2. Terminology and general scheme of notation.

Symbol Name Place of definition
or first occurrence
Y. Symmetry group for the material at @ 70
K Kinetic energy 64
K Compliance tensor 69
M Stress-momentum tensor 67
0 Origin, zero vector, zero tensor 5,6
P Part of B 14
o Orthogonal tensor 7
R Plane region 154
S Stress tensor 45
s Traceless part of stress tensor 78
S(B) Mean stress 61
A,  Complementary subsets of 9 B 14
U{E} Strain energy 94
4 Total energy 216
¥ Vector space associated with & 5
v =¥"X(— o0, ) 27
w Rotation tensor 31
v Singular surface 248
a Amplitude of wave 245, 254
b Body force 44
c Centroid of B 185
c Speed of propagation, also the constant
1671 (1 — ») 246, 248
I Irrotational velocity 213
g Isochoric velocity 213
e; Orthonormal basis 5
7 Pseudo body force field 66
£ System of forces 43
i Y—1. also function with values 5 (¢) =¢ 65
k Modulus of compression 74
i System of concentrated loads 179
m Direction of prepagation 245, 248
n Outward unit normal vector on 9B 14
P Pressure 50
P Position vector from the origin 0 5
Pe Position vector from the centroid ¢ 185
£ Admissible process, eiastic process 215
4 =|x —0| 21
8 Surface traction 59
s Prescribed surface traction : 102
] Admissible state, elastic state 94, 95
oy (8] Kelvin state corresponding to a concentrated
load laty 174
% Unit Kelvin state corresponding to the unit load
e aty S _ 178
o Unit doublet states at y 178
3, Center of compression at ¥ 179
&y .  Center of rotation at y parallel to the x;-axis 179

1‘
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geggmes

Symbol Name Place of definition
or first occurrence
Time 24
Displacement vector 31
Prescribed displacement on boundary 102
- Initial displacement 219
N Initial velocity 219
(B) Volume of B 35
" Rigid displacement 31
@,y,# Points in space 2
%; Cartesian components of @ 5
z Complex variable 159
BG{s Functional in Hellinger-Prange-Reissner principle 124
A§ai Functional in Hu-Washizu principle 122
Zs(y) Open ball with radius § and center at y 12
{¢} Functional in principle of minimum potential
energy i1
¥{s} Functional in principle of minimum
complementary energy 112
B Young’s modulus 78
8;; Kronecker’s delta 5
dv(B) . Volume change 34
£ Internal energy density 82
&iix Three-dimensional alternator 5
&qp Two-dimensional alternator 10
A Lamé modulus 76
I’ Shear modulus 76
By Maximum elastic modulus 85
P Minimum elastic modulus 85
v Poisson’s ratio 78
E Point in space-time 27
e Density 43
[ Scalar field in Boussinesq-Papkovitch-Neuber
solution, Airy stress function, scalar field in
Lamé solution 139, 157, 233
'S Vector field in Boussinesq-Papkovitch-Neuber
solution, vector field in Lamé solution 139, 233
o Rotation vector 31
1 Unit tensor 6
sym Symmetric part of a tensor 6
skw Skew part of a tensor 6
tr Trace of a tensor 6
® Tensor product of two vectors 7
4 Gradient 10
IZ“) Gradient in space-time 28
Symmetric gradient - 11
curl Curl 11
div Divergence 1
divg, Divergence in space-time 28

Laplacian 11



