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Preface

As was true of Volume 1, the purpose of this book is twofold. First, it
attempts to develop a thorough understanding of the fundamental concepts
incorporated in stochastic processes, estimation, and control. Second, and
of equal importance, it provides experience and insights into applying the
theory to realistic practical problems. Basically, it investigates the theory
and derives from it the tools required to reach the ultimate objective of sys-
tematically generating effective designs for estimators and stochastic con-
trollers for operational implementation.

Perhaps most importantly, the entire text follows the basic principles of
Volume 1 and concentrates on presenting material in the most lucid, best
motivated, and most easily grasped manner. It is oriented toward an engi-
neer or an engineering student, and it is intended both to be a textbook from
which a reader can learn about estimation and stochastic control and to pro-
vide a good reference source for those who are deeply immersed in these
areas. As a result, considerable effort is expended to provide graphical rep-
resentations, physical interpretations and justifications, geometrical in-
sights, and practical implications of important concepts, as well as precise
and mathematically rigorous development of ideas. With an eye to practical-
ity and eventual implementation of algorithms in a digital computer, em-
phasis is maintained on the case of continuous-time dynamic systems with
sampled-data measurements available; nevertheless, corresponding results
for discrete-time dynamics or for continuous-time measurements are also
presented. These algorithms are developed in detail, to the point where the
various design trade-offs and performance evaluations involved in achieving
an efficient, practical configuration can be understood. Many examples and
problems are used throughout the text to aid comprehension vf important
concepts. Furthermore, there is an exténsive set of references in each chap-
ter to allow pursuit of ideas in the open literature once an understanding of
both theoretical concepts and practical implementation issues has been es-
tablished through the text.



xii PREFACE

This volume builds upon the foundations set in Volume 1. The seven chap-
ters of that volume yielded linear stochastic system models driven by white
Gaussian noises and the optimal Kalman filter based upon models of that form.
In this volume, Chapters 8-10 extend these ideas to consider optimal
smoothing in addition to filtering, compensation of linear model inadequa-
cies while exploiting the basic insights of linear filtering (including an initial
study of the important extended Kalman filter algorithm), and adaptive esti-
mation based upon linear models in which uncertain parameters are embed-
ded. Subsequently, Chapter 11 properly develops nonlinear stochastic sys-
tem models, which then form the basis for the design of practical nonlinear
estimation algorithms in Chapter 12.

This book forms a self-contained set with Volume 1, and together with
Volume 3 on stochastic control, can provide a fundamental source for study-
ing stochastic models, estimation, and control. In fact, they are an out-
growth of a three-quarter 'sequence of graduate courses taught at the Air
Force Institute of Technology; and thus the text and problems have received
thorough class testing. Students had previously taken a basic course in ap-
plied probability theory, and many had also taken a first control theory
course, linear algebra, and linear system theory; but the required aspects of
these disciplines have also been developed in Volume 1. The reader is as-
sumed to have been exposed to advanced calculus, differential equations,
and some vector and matrix analysis on an engineering level. Any more ad-
vanced mathematical concepts are developed within the text itself, requiring
only a willingness on the part of the reader to deal with new means of con-
ceiving a problem and its solution. Although the mathematics becomes rela-
tively sophisticated at times, efforts are made to motivate the need for, and
to stress the underlying basis of, this sophistication.

The author wishes to express his gratitude to the many students who have
contributed significantly to the writing of this book through their feedback to
me—in the form of suggestions, questions, encouragement, and their own
personal growth. I regard it as one of God’s many blessings that I have had
the privilege to interact-with these individuals and to contribute to their
growth. The stimulation of technical discussions and association with Pro-
fessors Michael Athans, John Deyst, Nils Sandell, Wallace Vander Velde,
William Widnall, and Alan Willsky of the Massachusetts Institute of Tech-
nology, Professor David Kleinman of the University of Connecticut, and
Professors Jurgen Gobien, James Negro, J. B. Peterson, and Stanley Robin-
son of the Air Force Institute of Technology has also had a profound effect
on this work. I deeply appreciate the continued support provided by Dr.
Robert Fontana, Chairman of the Department of Electrical Engineering at
AFIT, and the painstaking care with which many of my associates have re-
viewed the manuscript. Finally, I wish to thank my wife, Beverly, and my
children, Kristen and Keryn, without whose constant love and support this
effort could not have been fruitful.



Notation

Vectors, Matrices

Scalars are denoted by upper or lower case letters in italic type.

Vectors are denoted by lower case letters in boldface type, as the vector x
made up of components Xx;.

Matrices are denoted by upper case letters in boldface type, as the matrix A
made up of elements A4;; (ith row, jth column).

Random Vectors (Stochastic Processes), Realizations (Samples),
and Dummy Variables

Random vectors are set in boldface sans serif type, as x(*) or frequently just
as x made up of scalar components x;; x(-) is a mapping from the sample space
Q into real Euclidean n-space R”*: for each w, € Q, x(w,} € R".

Realizations of the random vector are set in boldface roman type, as x:
x(w) = X. '

Dummy variables (for arguments of density or distribution functions, integra-
tions, etc.) are denoted by the equivalent Greek letter, such as & being associated
with x: e.g., the density function f, (). The correspondences are (x,&), (y,p),
(z.8),(Z, Z).

Stochastic processes are set in boldface sans serif type, just as random vectors
are. The n-vector stochastic process x(, ) is a mapping from the product space
T x Qinto R", where T is some time set of interest: for each t;€ T and w, € Q,
X(t;, ;) € R". Moreover, for each t;e T, x(t;,*) is a random vector, and for
each w, € Q, x(-,w,) can be thought of as a particular time function and is
called a sample out of the process. In analogy with random vector realizations,
such samples are set in boldface roman type: x(-, w,) = x(-) and x(z;, w,) = x(t;).
Often the second argument of a stochastic process is suppressed: x(z, ) is often
written as x(r), and this stochastic process evaluated at time t is to be dis-
tinguished from a process sample x(t) at that same time.

xiii



xiv . NOTATION

Subscripts
a: augmented n: nominal
b: backward running ss: steady state
¢: continuous-time t: truth model
d: discrete-time 0: initial time
f: final time; or filter (shaping filter)
Superscripts
transpose (matrix) *. pseudoinverse
complex conjugate transpose; .7 estimate
or transformed coordinates ~: Fourier transform;
~!: inverse (matrix) or steady state solution
Matrix and Vector Relationships
A >0: A is positive definite.
A >0: A is positive semidefinite.
x < a: componentwise, x; < 4;, X, < d,,...,and x, < a,.
Commonly Used
Abbreviations and Symbols
E{-}  expectation w.p.l  with probability of one
E{:|'} conditional expectation || determinant of
exp() exponential Il norm of
lim. limit - ri e root of
Lim.  limit in mean (square) vV matrix squar
(see Volume 1)
In(-)  natural log 1 t of
ms. mean square € clement O
) < subset of
max. [maximum p
: . {} set of; such as
min.  minimum X:x < al, ie, the set
R" Euclidean n-space {’; € ).(x = . Eh. t
sgn(*) signum (sign of) ofxe€ fsucu ! a
tr(') trace X; < a;1or atli:
List of symbols and pages where they
are defined or first used
A 14; 78; 137 Ass 220; 225

Ags 222,226 a 75
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CHAPTER 8
Optimal smoothing

8.1 INTRODUCTION

In the previous chapters, we have considered linear system models and
optimal filtering, the optimal estimation of the state at time ¢;, x(t;, ;) = x(t;),
‘based upon knowledge of all measurements taken up to time ¢;:

2(t,,w) =24, 2(t2,0)=12;, ..., 20, W)=y

or equivalently, Z(t;,w,) = Z;. We have actually considered optimal prediction
as well in attempting to estimate x(t,) based on knowledge of Z(t,_,, ;) = Z,_,.
Under our assumptions, the optimal estimate of x(t;), based on knowledge of
available measurement information, has been the conditional expectation of
x(t;), conditioned on that information:

%(t;") = E{x(t)|2(t;, 0)) = Z} (8-1)
%)= E_{x(ti)lz(ti— @) =2Z;_4} (8-2)

In fact, these values were shown to be optimal with respect to many different
criteria..

The Kalman filter, or square root implementation of the same estimator,
provides the best estimate of x(t;) based on all measurements through time ¢;
in a recursive manner, and it is thus ideally suited to real-time computations.
However, if one were willing (or able) to wait until after time ; to generate an
optimal estimate of x(¢,), then a better estimate than the %(¢;*) provided by the
Kalman filter could be produced in most cases [6, 7, 9, 23, 28]. The additional
information contained in the measurements taken after time t; can be exploited
to provide this improvement in estimation accuracy. The optimal smoothed
estimate [ 36] (again under many criteria) is

(/1) = E{x(t)|2(tj0) = Z}},  j>i (8-3)

1



2 8. OPTIMAL SMOOTHING

and the subject of optimal smoothing is concerned with developing efficient,
practical algorithms for calculating this estimate.

Section 8.2 formulates the smoothing problem and presents a conceptual
approach to smoothing of combining the outputs of a filter running forward
from initial time ¢, to the current time ¢;, and a separate filter running backward
from terminal time ¢, to ¢;. Three useful classes of smoothing problems, charac-
terized by the manner in which ¢; and t; can vary in (8-3), are presented in
Section 8.3, and then discussed individually in the ensuing three sections.

8.2 BASIC STRUCTURE

Explicit equations for various forms of optimal smoothers are generally
quite complicated. However, the basic smoothing concept .and underlying
structure can be discerned readily by dividing the estimation problem into two
parts, one involving the past and present measurements and the other based
on future measurements alone, and combining the results.

Consider a discrete-time model (possibly “equivalent discrete™):

X(£4 1) = D(ti4 1, tIX(L) + Byltult;) + Galt)wa(ty) (8-4)
2(t;) = H(e)x(¢) + v(t) (8-5)

with the usual assumptions on x(z,), wy(-, ), and v(-,-): Gaussian and indepen-
dent of each other, initial conditions with mean %, and covariance P,, white
and zero-mean processes of strengths Qq(t;) and R(t;), respectively, for all times
of interest. Now assume we are trying to estimate x(t;) from measurement data
through time ¢;, with j > i. Put all of the measurements up through time ¢,
into a single composite vector Z(t;), or perhaps more explicitly Z(t,, ¢;), denoting
the fact that its partitions are z(t,), z(t,), .. ., z(t;). Similarly, put all “future”
measurements, Z(t;, 1), 2(t;+ 2), . . . , Z(t;), into a single composite vector Z(t; . ;, t;).
Conceptually, a three-part procedure can now be employed to estimate x(t;):

(1) Calculate ‘
%(t;") = E{x(t)|2(t,,t) = Z, ;} (8-6)
by means of a filter running forward in time from time ¢, to time ¢;. A priori

information about x(t,) is used to initialize this filter.
(2) Independently, calculate

CR(t;T) = E{x(tl)'z(ti-l-l,tj) =Zgs1), 5} (8-7)

by means of a filter that is run backwards in time from time ¢; to time ¢;,,
plus a one-step “prediction” backward to time ¢;. The notation & (t;”) is
meant to denote the estimate of x(t;) provided by the backward-running filter
(thus the subscript b), just before the measurement at time ¢; is incorporated
(thus the minus superscript on ¢;7). Note that time ¢;,” is to the right of ¢,;* on



8.3 THREE CLASSES OF SMOOTHING PROBLEMS ' 3

a real-time scale for the backward filter, as shown in Fig. 8.1, since minus and
plus denote before and after measurement incorporation, respectively. The
“initial” condition for the backward-running filter is established by viewing
x(t;) as a random vector about which you have no a priori statistical information,
ie., Py !(z;7) = 0. Thus, an inverse-covariance formulation is appropriate for
the backward filter. (This will be developed further in Section 8.4.)

Forward filter (')

A A P 3PN PP T

Lp(t) Backward filter

FIG. 8.1 Forward and backward filter operation.

(3) The smoothed estimate of x(t;), X(t;/;) as defined in (8-3), is generated
by optimally combining the value of %(t;*) from the forward filter (incorporating
initial condition information about x(t,) and measurement information from
Z,,2,,...,%)and %,(t;”) from the backward filter (incorporating measurement
information from z,,,, z;,,,...,z;. This combination is accomplished by
viewing %(t;*) and ®,(¢;”) as two separate “observations” of x(t;) and assigning
relative weighting according to the confidence you have in the precision of
each, indicated by P(t;*) and Py(t; "), respectively. Another way of thinking of
this process is to consider the backward filter output %,(¢;,”) as providing an
additional “measurement” with which to update the forward filter. Note that
we choose to process z(t;, w,) = z; in the forward filter; we could just as easily
have chosen to process it in the backward filter instead, as long as this data
does not enter into both filters and thus be counted twice in the smoothed
estimate.

8.3 THREE CLASSES OF SMOOTHING PROBLEMS

There are many different classes of smoothing problems, each being deter-
mined by the manner in which the time parameters ¢, and ¢; are allowed to
vary in the desired smoothed estimate %(t;/;). However, there are three classes
of particular interest because of their applicability to realistic problems,
namely, fixed-interval, fixed-point, and fixed-lag smoothing problems
[10,23, 24, 27, 32, 36].



4 8. OPTIMAL SMOOTHING

To describe fixed-interval smoothing, let an experiment (system operation,
mission, etc.) be conducted, and let measurement data be collected over the
interval from initial time ¢, to final time ¢, [t,,¢,]. After all of the data has
been collected, it is desired to obtain the optimal estimate of x(z;) for all time
t;€ [to,t,], based on all measurements taken in the interval. Offline computa-
tions are thus inherently involved in generating the optimal fixed-interval
smoothed estimate, ’

ti=t0,tl,.-.,tf; tf=ﬁxedﬁnal tlme

Figure 8.2a represents these calculations schematically. This estimation tech-
nique is used for post-experiment data reduction to obtain refined state estimates

(a)
Rito/ty) x(t:/1)) Xt /1y) X(t/1y)
[ . $ 3, D IR , ]
§ - < +—< 2 1
ty t; LT s
N J
Data available from whole interval

(b) x(t;/t;)

\

X(ti/tiey) ) i
Y Estimates at one time of interest
¥
x(t,/ty)
[ $ 3 $ 2 ]
L > < 7 < ]
to 4 Liey te
“ J
N [] J
N ¥ )
Growing Igngth of data

. (©

k X(1:/t5)

\ L ot i
L 1
fo t lien &
p r—-—N intervals —

| Data .
I— i“N lf‘i+n+ 1) j
L J
fo Livy Lien+t ty
/ w [«—N intervals —,
. = Data 4

FIG. 8.2 Three types of smoothers: (a) fixed-interval smoothing, (b) fixed-point smoothing,
(c) fixed-lag smoothing. .
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of better quality than that provided by online filters. It is also possible to use
fixed-interval smoothing to estimate values of control inputs as well as states,
to assess whether the “deterministic” controls were actually of commanded
magnitude. A specific example would be post-flight analysis of a missile,
generating smoothed estimates of both trajectory parameters (states) and thrust
actually produced by the rocket motors for that flight (controls). '

To consider fixed-point smoothing, let there be a certain point (or points)
in time at which the value of the system state is considered critical. For example,
conditions at engine burnout time are critical to rocket booster problems. Thus,
one would desire an estimate of x(t;) for fixed ¢;, conditioned on more and more
data as measurements become available in real time:

R(4:/t) = E{x(t)|2(1) = Z;}

8-9)
t,-ﬁxed; ) t}-=ti,t[+1,...,tl (

This is the optimal fixed-point smoothed estimate, as depicted in Fig. 8.2b.

Finally, let measurements be taken, but assume that it is admissible for your
application to generate an optimal estimate of x(t;), not at time ¢;, but at time
t;+n» where N is a fixed integer. Thus, to estimate x(z,), you have available not
only the measurements '

2(t;, ) =2y, 2(t,0)=12;, ..., 2(tL,w)=1
but also the N additional measurements
Z(tis 1, O)=Zipy, .o, 2N, O) =2 x

and you are willing to delay the computation of the estimate of x(¢,) until ¢, 5
to take advantage of the additional information in these N measurements.
We wish to generate the optimal fixed-lag smoothed estimate,

X(t;/tisn) = E{x(ti)lz(tHN) =Zin}

8-10
ti=to, by .-y trns N = fixed integer (8-10)

Such an estimator is depicted in Fig. 8.2c and is particularly applicable to
communications and telemetry data reduction.

84 FIXED-INTERVAL SMOOTHING

To develop the fixed-interval smoother, we shall exploit the work of Fraser
[6, 7}, who first showed it to be just a suitable combination of two optimal
filters. Let the forward filter recursively produce a state estimate (¢, ) and
error covariance P(t,”) before incorporation of measurement z,, and X(t,*)
and P(r,*) after incorporation, for k = 1,2,...,i Notationally, let %,(t,”)
and Py (1, 7) denote the state estimate and error covariance before incorporating
measurement z, into the backward filter, and let X, (¢, *) and P,(t, *) be analogous



