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PREFACE

In the spring of 1959 the author gave a series of lectures on mixed boundary value
problems in mathematical physics to a group of graduate students and faculty
members of Duke University where he was engaged in the Mathematics Department
on research on partial differential equations under Contract AF 18(600) 1341. The
material that was covered in these lectures forms the basis of the present book
although it has been drastically revised in view of more recent work on the subject
and in the light of the author’s subsequent experience in giving courses of lectures
in the Mathematical Institute of the Polish Academy of Sciences, Warsaw, in the
autumn of 1959, in the University of Montreal in the summer of 1961 (as part of the
Summer Seminar of the Fifth Canadian Mathematical Congress); shorter courses
on the material which now forms Chapters 1V, V were given in the Mathematics
Department, North Carolina State University in the springs of 1962, 1963 respectively,
and in the University of Zagreb in the spring of 1964.

The book surveys recent work on mixed boundary value problems in potential
theory and on the mathematical tools devised for their solution; the original lectures
attempted to discuss diffraction theory but it was felt that diffraction problems should
be the subject of another book — written by someone more expert in this field than
the present author.

An account is given of the ways in which mixed boundary value problems arise
in potential theory and of the mathematical techniques which have been developed
in recent years to solve such problems. Although the earlicst papers are due to
Weber (1873) and Beltrami (1881) it is only since 1945 that there have been attempts
to develop the theory of dual integral equations (Chapter 1V), dual series equations
(Chapter V) and triple relations (Chapter VI); this work was initiated by the publication
in 1937 of Titchmarsh’s An Introduction to the Theory of Fourier Integrals which
included the first systematic treatment of dual integral equations, and in 1938 of
Miss Busbridge’s paper extending the range of validity of Titchmarsh’s solution.
The systematic treatment of integral representations of harmonic functions (Chapter
VII) is much older but it is only in recent years, due to the work of A. E. Green,
A. E. Heins and W. D. Collins that it has been applied extensively to the solution
of mixed boundary value problems.

No account is given here of the methods based on the theory of Cauchy integrals,
developed by N. I. Muskhelishvili and his school, for the solution of mixed problems
in the plane. These methods have played a decisive role in the development of poten-
tial theory and of the mathematical theory of elasticity but there is no need to describe
them here since they are so clearly expounded in Muskhelishvili's own book
(Muskhelishvili, 1953).

The application to physics of the methods developed in Chapters IV-VII is
illustrated in Chapter VIII where these techniques are applied to the consideration
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of some problems in electrostatics. This has the advantage that the physical situation
is simple but the procedures are easily extended to physically more complicated
situations such as arise, for instance, in the theory of elasticity. A reader interested
in this kind of application might consult the forthcoming book, Sneddon and
Lowengrub (1966), where these methods are used in the solution of crack problems
in the classical theory of elasticity. Although the boundary value problems discussed
here are taken entirely from potential theory the methods developed in Chapters
IV-VII are basic to one of the approaches to the study of diffraction problems.

The book is written primarily for students of applied mathematics, physics and
engineering. Some knowledge of transform theory and of the special functions of
mathematical physics is desirable but the necessary results involving Bessel functions,
Jacobi polynomials, Legendre functions, integral equations and fractional integration
are discussed in Chapter II. If only pure mathematicians were being catered for,
we should have to exercise a good deal more care in formulating the proofs of theorems
and to explore in considerably more depth numerous technical points which have been
passed over lightly; our aim has been to make these powerful analytical tools available
to as wide a class of reader as possible, and this can only be done by accepting standards
of rigour which fall short of those which are current in modern abstract mathematics.

It has been my great pleasure to have talked about mixed boundary value problems
with most of the authors whose names appear in the bibliography. Some have been
my students, some my colleagues or collaborators, some I have heard lecture and
with some I have had private conversations or correspondence; I like to think of all
of them as my friends. In the preparation of the reports based on the lectures I was
assisted by Dr. F. J. Lockett and Dr. M. Lowengrub. I am indebted also to Dr. J.
Burlak, Dr. M. Lowengrub, Dr. R. P. Srivastav, Dr. M. P. Stallybrass and Miss
Alison Baxter for their comments on the manuscript of the present version and for
their help in reading the proofs. I am grateful also to Professor W. D. Collins for
reading Chapter VII at the proof stage and for his advice on how it could be
improved. My thanks are due also to Miss Jean Melville for her assistance in the
preparation of the indices.

Finally I wish to express my gratitude to Dr. J. J. Gergen who invited me to Duke
University in the first instance, who did so much to make my first and subsequent
visits there a pleasant and intellectually stimulating experience, and who has at all
stages encouraged me to complete the present book.

Ian N. Sneddon

The University of Glasgow
Scotland
28 February, 1966
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CHAPTER I

THE OCCURRENCE OF MIXED BOUNDARY VALUE
PROBLEMS IN POTENTIAL THEORY

In this chapter we shall discuss briefly some of the mixed boundary value
problems which arise in mathematical physics. We use the term “‘mixed”’
boundary value problem to distinguish this type of problem from the
“uniform’’ problems of Dirichlet and Neumann, It will be recalled that
a problem in potential theory is called a Dirichlet problem if the potential
function whose form inside a region S is to be determined is prescribed at
each point of S, the boundary of S, and a Neumann problem if it is the normal
derivative of the potential function which is prescribed on 6S—not the function
itself. In potential theory a typical problem of mixed kind would be one in
which the potential function is prescribed over a part of the boundary, and its
normal derivative is prescribed over the remaining part. In another kind of
problem the potential function is prescribed over part of the boundary and a
linear combination of the function and its normal derivative is prescribed
over the remaining part.

1.1. Electrostatic Problems

One of the simplest problems which we can conceive in electrostatics is that
of calculating the electrostatic potential of a circular disk which is charged
z

v, (0,2)

!
i

V. (0,2)

Fig. 1
to a prescribed potential. There is no loss of generality if we take our unit
of length to be the radius of the disk. If we use cylindrical coordinates (p, 3, z)
we may therefore take the disktobe p <1, z =0,

1



2 MIXED BOUNDARY VALUE PROBLEMS {11

If we denote by V, the potential in the half-space z =0, and by V_, the
potential in the half-space z < 0, we see that ¥, and V. must satisfy Laplace’s

equation, i.e.

AV, =0, z>0;, AV_=0, z<0, (1.1.1)
where, in cylindrical coordinates, the Laplacian operator A takes the form
2 2 2

ity o gt e (1.12)
Further, these harmonic functions V, and V_ must satisfy the continuity
conditions

Vi = V_,onz=0, (1.1.3)
Ve V. _
% "= 4no(p, ), on z = 0, (1.1.49)

where a(p,9) denotes the surface charge density on the plane z = 0. Finally

it is assumed that, in the absence of an external field
Vi—>0asr—>o, z>0
} (1.1.5)

V_—-0asr—>o, z<0

where 12 = p? + z2.
If, therefore, we prescribe the potential over the surface of the disk to be
f(p,?), we have

Ve=V.=f(p,®, z=0, p=1, (1.1.6)

and if we make use of the fact that the surface charge density is zero outside
the disk, we have

Ve AV

m— =0 z=0, p>1 (1.1.7)

The problem of determining the electric field due to a disk charged to a known
potential f(p,?) is therefore solved if we can solve the equations (1.1.1) subject
to the boundary conditions (1.1.5-7). If we wish to calculate the density of
electric charge on the disk, we can then make use of equation (1.1.4). It is a
simple matter to show that we can replace the problem of determining the two
functions V, , V_, each defined in the relevant half-space, by that of finding a
single potential function V, in z > 0, satisfying the boundary conditions
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V = f(p9), pS£1, 054<2r,
1.1.8
—601=0, p>1, 0§19<21r,} (1.18)
4

on z = O (cf. §3.1 below), and vanishing as r - oo through positive values of 2.

In this way we reduce the problem of the electrified disk to that of solving a
mixed boundary value problem for the positive half-space z = 0, the mixed
conditions being prescribed on the boundary z = 0. The same problem can,
however, be reduced to a Dirichlet problem in the following way: we begin by
considering the electric field in the space bounded by two concentric spheroids
S, and S,, it being assumed that the potential function V assumes prescribed

Fig. 2

values on the surface S; and is zero on the surface S,. We then consider the
limiting case in which the spheroid S; degenerates into a circular disk and the
spheroid S, becomes a sphere of very large radius. In the simplest case this is
indeed a useful way in which to proceed but the procedure is one which cannot
easily be generalized to more complicated situations, such as those involving
two circular disks, and, since it involves the use of a not too familiar system of
orthogonal curvilinear coordinates, the results are often presented in a form
which makes numerical calculation difficult (cf. §3.3. below).

The mixed boundary value problem posed by the equations (1.1.8) is probably
the simplest one of its kind and, for that reason, it is regarded as the ““classical’’
mixed boundary value problem.

Several generalizations immediately suggest themselves. We can think of
the electrified disk as being enclosed within a concentric circular cylinder
whose axis is normal to the plane of the disk and which is itself connected
to ground. Because of the occurrence of finite boundaries we should expect
this to be a much more difficult problem to solve than the previous one and
in fact it proves to be so.

Suppose that the potential in the upper half of the space bounded by the
cylinder is denoted by ¥V, and in the lower half by V_. Then the function V.
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z
Zz=+h-
%
] ! Vaadd .
O
'
Z=—h--- B
Fig. 3 N

must satisfy Laplace’s equation in the region 0< z < h, p < a if the cylinder
has radius a and height 2h, and V_ must satisfy Laplace’s equation in the
region — h £z £ 0, p < a. The boundary conditions satisfied by these functions
are easily seen to be

Ve = Vo=f(p,9), z=0, p =1, (1.1.9)
ov, oV <

= = < 1.1
= e z=0, 1 <p Za, (1.1.10)

Vi =0, onz=+h, p<a, andonp=a, 0=sz=h (11.11)
V_ =0, onz=—h, p<a, andonp=a, —h=<z<0. (1.1.12)

By a method similar to that used in the case of an electrified disk in an infinite
space we can reduce this problem to that of determining a function V, which
is harmonic in the region 0 < p<a,0<z < h, and which satisfies the mixed
boundary conditions

V = f(p9), 2=0, 0<p=1 1
ov L

Pl 0, z=0, 1<p<a (1.1.13)
V =0, onz=~h, and onp=a.J

Another obvious generalization of the problem of the electrified disk is the
problem of determining the electrostatic field due to two parallel coaxial disks
of equal radius (which may be taken as the unit of length) placed with their
centres on the z-axis. Such an arrangement is shown in Fig. 4. If the potentials
in the regions z < — 6, ~ 0 <256,z + 0 are denoted respectively by V_,
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z
v,
+ /V=ﬁ
z=+0
|74
o O Q
Z=-0—
v \V=’5
Fig. 4

Vo, V, and if the upper disk is charged to a prescribed potential f,(p,9) and
the lower one to a potential f, (p,9) then we find that the three potential func-
tions must satisfy the boundary conditions

oV, v,
=20 5>, (1.1.14)

on the plane z = + 4, and the boundary conditions

v; =:vb=iﬁ’ 0§§P‘<1,

vy av_
= = < —_— ——— 1.
VosVo=f, 05p<1, — = p>1, (1.1.15)
on the plane z = — §, and the further condition that each of these functions

must tend to zero as r — co. This problem is a classical one, a solution in a
simple case having been derived by Riemann (1855).

We get another set of problems by replacing the circular disk 0 < p <1,
z = 0 by the circular annulus ¢ £ p £ 1, z = 0. In the first problem considered
we then have to replace the set of equations (1.1.8) by the set

ov
—_— = < < :
=~ =0, 0=p<g 0=0<2n,l
V =flp9), e<p=s1l, 0=9<2r; (1.1.16)
v
—_— = <
e 0, p>1, 0¥ <2n

on the plane z = 0. The problem in which a charged annulus is placed inside
a grounded cylinder and the one in which two identical charged annuli are
placed with their axes coincident lead to sets of equations which are simple
generalizations of the sets (1.1.9-12), (1.1.14-15) respectively.

A further set of problems is obtained by replacing the circular disk by a thin
spherical cap. The analogue of the first problem considered above is that of
determining the electrostatic field due to a thin spherical cap maintained at a
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prescribed potential. In this case it is more appropriate to use spherical polar
coordinates (r, 0,9) referred to the centre of the sphere as origin and the axis

of the cap (Oz in Fig. 5) as polar axis, and to describe the cap by the equations
r=a, 0 < 0 < o. The electrostatic potential V then satisfies Laplace’s equation

2 2
and if we write
Vi, 0=Zr=<a
V= { (1.1.18)
Va, r=a
then the boundary conditions can be put into the form
Vi = Vonr=a, 0<0=<r;
Vi=Vy=f0,%, 0onr=a 050<aq, 0<9 < 2n;
Q‘;/Tl=%1rzon r=a, 020<m; L (1.1.19)
Vi = O(r) as r—0,
V, =00 ") as r-ow, ]

where the function f(6,9) is prescribed for 0 <0< a, 0 <& < 27
In a similar way we can formulate the boundary value problem corresponding
to the determination of the electrostatic field due to a charged spherical cap
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situated inside a grounded cylinder and the problem corresponding to two
identical spherical caps placed with their centres and axes coinciding.
Analogous to the circular annulus we could consider the annular spherical
cap defined by the equations r=a, <0 =<a, 059 <2n (cf. Fig. 6). The
potential function V describing the electrostatic field produced by charging

z
\
\ P n bt
Pl
rd
v
/ \\ \\
/ \
N
| p¥a ‘.
\ o )
\ /
\
/
\ /
A /
X S~ . y
Fig. 6

such a spherical ring to a prescribed potential f(8,9) again must satisfy equation
(1.1.17) and if we make the decomposition (1.1.18) it satisfies the set of relations
(1.1.19) with the exception that the second and third lines of these conditions
are replaced by the conditions

v, oV, < <9< )

o= o 0=0<p 0<d<2m,

Vi = V,=f0,8), B<0=La, 059 <2m, (1.1.20)
Qﬂ:%’ a<f=n 0=d<2n

ar or - -

on the sphere r = a.

1.2, Steady-State Diffusion Problems

Mixed boundary value problems arise naturally also in the theory of diffusion
—for instance, in the theory of the conduction of heat, or the diffusion of
thermal neutrons. For simplicity, we shall restrict our remarks to the case of
steady-state conduction of heat. We know from the theory of the conduction
of heat that the temperature 6(r) at a point with position vector r in a region R
obeys Poisson’s equation

KAQ+© =0 (1.2.1)
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where « is a physical quantity characteristic of the properties of the solid body
forming R, and © is a source function characterizing the input of energy into
the solid from thermal sources situated within it. Now the flux of heat across
a small area 6S of the surface S of the solid can easily be shown to be

1 06
— —08.

K 6n5 ?

where n denotes distance along the outward drawn normal (cf. Fig. 7). Sup-
pose, for instance, that we have a problem in which we wish to determine

the distribution of temperature in a region R, bounded by a simple closed

=0

Fig. 7

surface S in the interior of which heat is generated and through the surface
of which heat is leaving at a steady rate g(r), reS. Suppose, further, that
this temperature field is disturbed by the introduction of a certain distribution
of heat sinks on a part S; of S such that 6 is zero on S,. We can then readily
show that the temperature 6(r) must satisfy the partial differential equation
(1.2.1) and the mixed boundary conditions

0(") = O’ reSl’

(1.2.2)
o = e, resy |

where S =S, US,.

A problem of this type arose, for instance, in a metallurgical investigation
(Karush and Young, 1952); in this instance, R was the half-space z > 0, S was
the plane z = 0 (and a hemisphere of infinite radius), and two cases of S, were
considered:

(1) Sy was the infinite strip | x | < a;

(i) S; was the circle x> + y? < 2.

Another type of problem arises in the case where there are no heat sources
within the body. In this connection the function ® occurring in equation (1.2.1)
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is identically zero. The temperature field is supposed to be produced by uneven
heating of the surface of the body. A typical case is shown in Fig. 8. Over the
part S, of the surface, the temperature 8 is prescribed, while over the remaining

Q=f

29, he=0
an

Fig. 8

part of the surface there is radiation from the surface into a medium which is
maintained at a fixed temperature (which may be taken to be the zero temper-
ature from which fluctuations are measured). The boundary conditions then

become:
o,y = f(r), reSl,l

20
5, Hho =0, reSZ.J

(1.2.3)

In the first of the equations (1.2.3), the function f(r) is assumed to be prescribed,
and in the second equation (which is merely an expression of Newton’s law of
cooling) h is a constant.

Among the simplest boundary value problems in the theory of diffusion are
those concerned with the steady flow of heat in cylinders. If 8(p, 9, z) is the de-
viation of the temperature at the point with cylindrical coordinates (p,?, z) from
a standard temperature 0, then it is well-known that in the steady state 6 must be
a harmonic function in the region considered, i.e. A@ = 0 in the region R under
consideration. If we consider the distribution of temperature in the cylinder
p £ a,0 £ z £ h when the temperature is prescribed over the circle p £ 1 of the
flat surface z = 0 then we have the bound’ary condition

0(0,9,0)=f(p,, 0Ospsl, 0sd¢s2m (1.2.4q)

If the remaining part of this flat surface is insulated to prevent the flow of heat
across it or if there is radiation from that part of the surface into a medium
maintained at the standard temperature 0, then we have a boundary condition
of the form



