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Preface

Several years ago our statistical friends and relations introduced
us to the work of Amari and Barndorff-Nielsen on applications of
differential geometry to statistics. This book has arisen because
we believe that there is a deep relationship between statistics and
differential geometry and moreoever that this relationship uses
parts of differential geometry, particularly its ‘higher-order’ aspects
not readily accessible to a statistical audience from the existing
literature. It is, in part, a long reply to the frequent requests we
have had for references on differential geometry! While we have
not gone beyond the path-breaking work of Amari and Barndorff-
Nielsen in the realm of applications, our book gives some new
explanations of their ideas from a first principles point of view
as far as geometry is concerned. In particular it seeks to explain
why geometry should enter into parametric statistics, and how the
theory of asymptotic expansions involves a form of higher-order
differential geometry.

The first chapter of the book explores exponential families as
flat geometries. Indeed the whole notion of using log-likelihoods
amounts to exploiting a particular form of flat space known as an
affine geometry, in which straight lines and planes make sense, but
lengths and angles are absent. We use these geometric ideas to
introduce the notion of the second fundamental form of a family
whose vanishing characterises precisely the exponential families.

The second chapter, in which we introduce manifolds, should
be most useful to statisticians who want to learn about the sub-
" ject. The traditional theory starts with a heavy meal of the purest
mathematics, (topological spaces, co-ordinate coverings, differen-
tiable functions), before embarking on a treatment of calculus that
is filled with multilinear algebra, and bears little relationship to
anything one might have learned about several-variable calculus as
an undergraduate. By contrast our treatment starts with calculus

xi



xii PREFACE

on manifolds as a geometrical approach to the theory of rates of
change of functions, treating it as though it were a first course
on several variable calculus. We explain how the several-variable
chain rule can be interpreted as dividing variations tlucugh a point
into families with different velocities, how df is to be interpreted
as the rate of change of f as a function of velouity, and what are
vector fields (contravariant 1-tensors) and 1-forms (covariant 1-
tensors). We give a brief discussion of the foundational concepts of
differentiability and manifolds at the end of the chapter, but these
are not really important for the application of differentiai geometry
to statistics.

Our comment on the great divide between the so-called co-
ordinate-free and index-laden approaches ‘o differential geometry,
is that we aim to be geometrical without being obsessed with free-
dom from co-ordinates. We have enormous interest in co-ordinates
when it comes to caiculations. However, it seewis pointless to us
to be in the position either to be able to caleu’aie everything but
explain nothing, or to explain everything but caiculate nothing.
So we explain geometrical concepts in co-ordinate-free terms, and
we translate them into co-ordinate systems for calculations, with
whatever debauches of indices they require.

Once the basic notions are in place, most notably the definition
in Chapter 2 of the tangent space to a manifold, we begin an
elaboration of the parts of differential geometry that are useful
in statistics, illustrating them with statistical applications and
exaniples. As the number of statistical applications is growing
rapidly we have been unable to consider them ail. However we
believe that we have covered all the concepts from differential
geometry that are needed at this point in iime. Chapter 3
explains the idea of submanifold and the definition of a statistical
manifold. We mention again the simplest statistical manifolds, the
exponential families, and then consider the families with a high
degree of symmetry, the transformation models

The next two chapters introduce the concept of connections and
their curvature, Amari’s a-connections and the theory of statistical
divergences. A connection defines the rate of change of vector
fields. It therefore tells us which curves have constant tangent
vector fields, that is which curves are straight lines or geodesics.
Hence a connection defines a notion of geometry, or straight lines
and the different connections define different geometries. Some
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connections are essentially ‘flat’. That is, the geometry they define
is Euclidean. The curvature of a connection is a measure of its
departure from flatness.

In Chapter 6 we consider the theory of Riemannian manifolds.
An initial impetus {or introducing differential geometry into statis-
tics was the observation of Rao that the Fisher information could
be interpreted as a Riemannian metric on the space of parametrised
probability distributions forming the statistical model.

Chapter 7 introduces the maximum likelihood estimator and
considers some results in asymptotics, in particular the work of
Amari. Here we begin to see the importance of Taylor series and the
need for a higher-order geometry in statistics. The final Chapters
8 and 9 consider this higher order geometry: the theory of strings
or phyla developed by Barndorff-Neilsen.and Blasild. Strings are
generalisations of tensors. If we think of tensors in co-ordinates
as functions with many indices transforming under a change of co-
ordinates by the first derivative of the co-ordinate transformation,
then a string has more indices and transforms by higher derivatives
of the co-ordinate transformation. To consider strings from a co-
ordinate-free point of view requires that we introduce in Chapter
8 the theory of principal and vector bundles, in particular the so-
called infinite frame bundle and the infinite phylon group. Chapter
9 then applies this theory to Taylor expansions and co-ordinate
strings and relates the theory of strings to the representation theory
of the infinite phylon group.

A book is not just the result of the labours of its authors but
also of the generosity of others. First and foremost we thark our
families who had to live through this book’s production; then our
many statistical colleagues who have laboured to explain their
subject to us. Our thanks and apologies for the places where
despite your cfforts we get it wrong. Particular thanks must go to
Peter McCullagh for providing us with TEX macros for this book
and to Peter Jupp for his amazingly thorough reading of our first
manuscript. Of course any remaining errors and omissions are our
responsibility.

Michael K. Murray
John W. Rice
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CHAPTER 1

The geometry of
exponential families

1.1 Geometry, parameters and co-ordinates

Parametric statistics concerns parametrised families of probability
distributions p(6), where the parameter § = (81, .. .,0%) varies over
some open set in RY. The most common example is the normal
family, which is usually expressed as a family of densities

1
p(p,0) = N(n,07%) = oo eXp(———5

The parameter 6 in this case is the pair (u, o) which varies over
the open subset of R? determined by u > 0. The sample space is
R and the densities are with respect to Lebesgue measure dz on
R, so that as a set of probability measures the normal family is

N = {p(p,0)dz | p € R, 0 > 0}

Statistical inference concerns situations in which one knows
or suspects that data are generated by sampling from a space
according to a probability distribution which is a member of
some known family p(8). The problem is to infer facts about
the distribution from the data. For example, one might want to
know the parameter value of the distribution (point estimation),
or simply whether or not this value lies in some particular set of
parameters (hypothesis testing). If a given collection of numbers ~
has arisen by sampling from a normal distribution then one might
ask which normal distribution it is, i.e. what are the values of u
and o for this particular normal distribution. On the other hand
one might only want to test the hypothesis that the mean is greater
than 1.
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.

Many of these tests and much of the theory of statistical in-
ference depends on the chioice of parameters. This dependence
on parameters usually comes about because the theory applies
differential calculus to these parameters; differentiating them or
perhaps Taylor series expanding some function with respect to
them. It is important to know how the theory depends on the
parameters, either because one suspects that it should not depend
on the parameters at all or because one would like to know if a
particular choice of parameters may simplify matters. That part
of differential geometry which we have called ‘Calculus on Mani-
folds’ in Chapter 2, is concerned exactly with this question of how
the differential calculus depends on co-ordinates. It obviously has
immediate application to these problems.

Differential geometry however is more that just understanding
how calculus depends on co-ordinates — it is also a theory of geome-
try or shape. Borrowing from the ideas of differential geometry we
think of families of probability distributions as entities independent
of any particular parametrisation, and able to support a variety of
geometries. We seek to relate their statistical properties to these
geometries.

We will motivate this use of geometry in statistics by considering
in this first chapter the geometric significance of the exponential
family. It has long been known that in seeking answers to many
statistical questions the simplest type of family to deal with is the
ezponential family, i.e. one which can be parametrised in the form

p(8) = exp(0'z' + ... 460"z — K(6))du

where z!,...,z" are random variables and /4 a measure on some
sample space. If there is to be a meaningful relationship between
statistics and geometry we must be able to discover some geometric
significance to a family being exponential. Indeed we can. We shall
show that the geometry of an exponential family is perhaps the
simplest geometry possible, that is, affine geometry. This explains
the geometric significance of the so-called canonical parameters9 in
the exponential parametrisation. They are the affine co-ordinates
arising from the affine geometry.

If we regard a parametrised family of probability distributions
as analogous to a surface with a co-ordinate system on it then
individual probability distributions correspond to the points on
the surface. and their parameter values are their co-ordinates.
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After a fashion, this kind of interpretation is often made for the
normal family by regurding (4, o) as the Cartesian co-ordinates
of a point in the upper half plane in R2. This certainly sets up a
correspondence between the probability distributions of the normal
family and points on a surface, viz. the upper half plane. Iowever,
there is no good reason to think that such an ad hoc correspondence
shouid be taken seriously, nor in particular that the flathess of
the plane or any other of its geometric features should have any
significance for the statistical properties of the normal distribution.
On the other hand, as we shall see in this first chapter, if we
use the cxponential puarametrisation to set up a correspondence
between individual normal distributions aud points of & plane then
we should take its flatness very seriously indeed.

Ultimately we shall be considering a variety of geometries on any
given family of probability distributions, which may be interpreted
loosely as hnposing a variety of shapes upon the ‘surface’ of
probability distributions. For any given gecmetry, or shape, there
may be co-ordinate sysiems which are closely tied to the geometry
and co-ordinate systems which are not. For example, the Euclidean
geometry of a picne, involving such concepts as distance and
orthogonality, is well reflected by Cartesian co-ordinate systems,
but not so well by polar or other kinds. The existence of an
exponential paraletrisation comes about because, in a certain well
defined sense, the family of probability distributious is flat, and the
expone.tial parameters or co-ordinates are the ones adapted to this
flatness.

It is well known that a family can be exponential without it
being immediately apparent. For example, the normal family is an
exponential family since as well as its usual parametrisation it can
be parametrised

p(01,0_2)(a:_)l,= exp(z?6' + 26% - K(9))

where
-1 v 1 —_ 2y2
1. 2_ H _ ! T (6%
o= wr 0= oz end K(6)= 2 lOg(-él_)_ 46!

The parameter 6 = (8', 6?) is called the canonical parameter, and
lies in the open subset of R? defined by 6! < 0. ‘

The point is that one cannot say that a family of probability
distributions is not an exponential family just because it does not
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appear in exponential form. It has to be proved that the family
cannot be reparametrised into exponential form. The question
as to whether or not a family of probability distributions is an
exponential family is therefore a question about reparametrisation
of the family.

Because we are able to assign geometric meaning to a family
being exponential we are able to produce an invariant of any family,
_ its second fundamental form, whose vanishing characterises exactly
the exponential families. In the case of a one-dimensional family
this second fundamental form is closely related to Efron’s statistical
curvature Efron (1975).

1.2 Canonical co-ordinates

Let us begin to look for geometry in an exponential family

N p(z,0) = exp(}_ ='6" - K(9)) (1.2.1)
. i=1
by considering the canonical parameters 6 = (8',...,0") € R7

which are obviously not arbitrary but have to be chosen so that
p has this special form. We seek to relate the fact that an
exponential family has this restricted set of parameters to some
kind of geometry. It is important then to know how restricted
this set of parameters is. That is ‘how canonical are the canonical
parameters ?’ Is it possible to have another set of random variables
y*(#), parameters ¢(6), and a function J(6) such that

p(z,0) = exp(3_ ¥ (2)¢'(6) - J(0))?

t=1

We should, of course, also allow the possibility that we have
changed the measure relative to which these are densities, so we
could have

p(z, 0) = exp(Zy (z)¢°(6) - J€6) + f(z)) (1.2.2)

i=1
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for some function f. Comparing (1.2.1) and (1.2.2) we see that we -
must have

Xr:z"e‘ - K(9) = i ¥ (2)¢'(8) - J(8) + f(z) (1.2.3)
i=1 =1

and differentiating both sides of (1.2.3) with respect to z* gives

i =0y ., Of
Pl o

for every ¢ = 1,...,r. In particular if we choose a point # such that
#'(8) = 0 for all { we see that

i_ Of
&= Ozt
must bq a constant vector and
oy
X'J - -a-z—' -

must be a constant matrix.
The two sets of canonical parameters are therefore related by

o = Z Xj¢ +¢ (1.2.4)

i=1

The relationship in-equation (1.2.4) between the canonical pa-
rameters of two exponential parametrisations is exactly the same
as the relationship between Cartesian co-ordinate systems in the
plane, but with the restriction in this latter case that the 2 x 2
matrix X; must be a rotation matrix. In order to obtain general
non-singular matrices X} we must go beyond Cartesian systems
to those determined by skewed axes with independent units of
length. Such co-ordinate systems are not tied to the notions of
length and angle, but they do reflect the notions of straightness
and parallelism, or equivalently, as we shall explain, the notion of
parallel translation in the plane.

As an example of the kind of geometry implied by this rela-
tionship between the canonical co-ordinates notice that we can use
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the canical co-ordinates to define the notion of a straight line in an
exponential farnily. We say that a subset L of an exponential family
is a line if its image uander some canonical co-ordinates 1s a line in
R". This is, in fact, independent of which particular canonical co-
ordinates are chosen because the image of a line under an affinc
transformation is still a line. Similarly we can define an affine
subspace of an exponential family to be a subset whose image under
some (and hence all) canonical co-ordinates is an affine subspace
of R", that is, the translate of a vector subspace. To understand
where all this gecmetry is coming frorn we have to introduce the
concept of an affine space.

1.3 Affine spaccs

An affine space can be thought of as & set which becomes a vector
space by selecting a point to be the zero point. The plane is an
important motivaling cxample. It is not a vector space itself, and
in particular no one point stands out as the zero element. However,
having chosen an arbitrary point fo play the role of an origin, and
so to be the zero vector, all'of the other points can be regarded as
vectors. Specifically, points correspond to the tips of arrows based
at the chosen >rigin, and they are added or multiplied by scalars
according to tt e parallelogram rules applied to their corresponding
arrows. Although it usually doesn’t matter, the addition and
scalar multipli :ation of points is completely different for different
choices of orig n, because of the different arrows to which points
correspond.

A vector in she plane doesn’t usually refer to a single arrow but
rather to a whle family of arrows which are parallel icanslates of
each other. In ther words, we regard two arrows which are parallel
translates of e.ch other as instancés of the same vector. Given a
vector v and a point p in the plane we can consider the particular
. arrow based at p which corresponds to v. We call its tip p+v. From
this point of v ew each vector v defines an operation on the plane
- sending each point p to the point p + v. We call this operation
translation thiough v, and denote it by +v applied to the right
so that the va ue of +v acting on p is given in the usual way as
v+p. Notice that (p+v) + w = p+ (v+ w), or in other words the
composition of the operation +v with +w is the operation +(v+w).
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Moreover, given any two points p and ¢ there is a unique vector v
for which ¢ = p + v, namely the vector corresponding to the arrow
from p to ¢. This is just another way of saying that a choice of
origin p sets up a onc-to-one correspondence between points and
vectors, viz. ¢ corresponds to the vector v which translates p to q.

The same structure appears in three-dimensional space. We
have three-dimensional vectors v, represented by arrows, which
define translation operations +v satisfying (p+v)+w = p+(v+w)
for any two vectors v and w and any point p. Morcover, for any
two points p and ¢ there is a unique vector v such that ¢ = p+ v,
so that choosing p as an origin sets up a one-to-one correspondence
between points and vectors. A general affine space is defined as a
set X and a vector space V, each vector v of which corresponds to
a transformation +v from X to itself called translation by v. The
translations have to satisfy the two rules described above, that is,
(p+v)+w = p+(v+w) for any point p and vectors v and w, and
given any two points of X there must be a unique translation that
moves one to the other.

Affine spaces have a fundamental geometic significance in that
they are to be considered flat, like the plane and three-dimensional
space. A characteristic of affine spaces is the presence of special
co-ordinate systems called affine co-ordinates. As we shall show,
exponential families are affine spaces, and their canonical parame-
ters are affine co-ordinates.

In the plane a pair of linearly independent arrows based at an
origin determines a co-ordinate system. In vector space terms the
arrows vy, vz form a basis for the space of arrows, so that every
arrow v can be expressed uniquely in the form 0;v, + 02v5. The
numbers (;,6,) can be regarded as co-ordinates for the point
corresponding to v. If the arrows are of unit length and at right
angles, and vy, v, are in anticlockwise order, then such a co-ordinate
system is a Cartesian co-ordinate system. In general these kinds of
co-ordinate systems are called affine co-ordinates.

For a general affine space, having chosen an origin o we choose
an ordered basis v!,v?,...,v" for the space of translations. This
is like choosing a set of axes at the origin. We obtain co-ordinates
for points by expanding their corresponding vectors in terms of the
basie. Each vector can be expressed as

v=0 4+ 6%+ 40y



