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Preface

Facing the unusual popularity of wavelets in sciences, I began to wonder whether
this was just another fashion that would fade away with time. After several years of
research and teaching on this topic, and surviving the painful experience of writing
a book, you may rightly expect that I have calmed my anguish. This might be the
natural self-delusion affecting any researcher studying his corner of the world, but
there might be more.

Wavelets are not based on a “bright new idea”, but on concepts that already
existed under various forms in many different fields. The formalization and emer-
gence of this “wavelet theory” is the result of a multidisciplinary effort that brought
together mathematicians, physicists and engineers, who recognized that they were
independently developing similar ideas. For signal processing, this connection
has created a fiow of ideas that goes well beyond the construction of new bases or
transforms.

A Personal Experience At one point, you cannot avoid mentioning who did what.
For wavelets, this is a particularly sensitive task, risking aggressive replies from
forgotten scientific tribes arguing that such and such results originally belong to
them. As I said, this wavelet theory is truly the result of a dialogue between scien-
tists who often met by chance, and were ready to listen. From my totally subjective
point of view, among the many researchers who made important contributions, I
would like to single out one, Y ves Meyer, whose deep scientific vision was a major
ingredient sparking this catalysis. It is ironic to see a French pure mathematician,
raised in a Bourbakist culture where applied meant trivial, playing a central role
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along this wavelet bridge between engineers and scientists coming from different
disciplines.

When beginning my Ph.D. in the U.S., the only project I had in mind was to
travel, never become a researcher, and certainly never teach. I had clearly destined
myself to come back to France, and quickly begin climbing the ladder of some big
corporation. Ten years later, I was still in the U.S., the mind buried in the hole
of some obscure scientific problem, while teaching in a university. So what went
wrong? Probably the fact that I met scientists like Yves Meyer, whose ethic and
creativity have given me a totally different view of research and teaching. Trying
to communicate this flame was a central motivation for writing this book. I hope
that you will excuse me if my prose ends up too often in the no man’s land of
scientific neutrality.

AFew Ideas Beyond mathematics and algorithms, the book carries a few impor-
tant ideas that I would like to emphasize.

e Time-frequency wedding Important information often appears through a
simultaneous analysis of the signal’s time and frequency properties. This
motivates decompositions over elementary “atoms” that are well concen-
trated in time and frequency. It is therefore necessary to understand how the
uncertainty principle limits the flexibility of time and frequency transforms.

e Scale for zooming Wavelets are scaled waveforms that measure signal vari-
ations. By traveling through scales, zooming procedures provide powerful
characterizations of signal structures such as singularities.

o More and more bases Many orthonormal bases can be designed with fast
computational algorithms. The discovery of filter banks and wavelet bases
has created a popular new sport of basis hunting. Families of orthogonal
bases are created every day. This game may however become tedious if not
motivated by applications.

o Sparse representations An orthonormal basis is useful if it defines a rep-
resentation where signals are well approximated with a few non-zero coef-
ficients. Applications to signal estimation in noise and image compression
are closely related to approximation theory.

o Try it non-linear and diagonal Linearity has long predominated because of
its apparent simplicity. We are used to slogans that often hide the limitations
of “optimal” linear procedures such as Wiener filtering or Karhunen-Logve
bases expansions. In sparse representations, simple non-linear diagonal
operators can considerably outperform “optima ” linear procedures, and
fast algorithms are available.
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WAVELAB and LAsTWAVE Toolboxes Numerical experimentations are necessary
to fully understand the algorithms and theorems in this book. To avoid the painful
programming of standard procedures, nearly all wavelet and time-frequency algo-
rithms are available in the WaveLaB package, programmed in MATLAB. WAVELAB
is a freeware software that can be retrieved through the Internet. The correspon-
dence between algorithms and Wavelas subroutines is explained in Appendix B.
All computational figures can be reproduced as demos in WavELAB. LAsSTWaAVE is a
wavelet signal and image processing environment, written in C for X11/Unix and
Macintosh computers. This stand-alone freeware does not require any additional
commercial package. It is also described in Appendix B.

Teaching This book is intended as a graduate textbook. It took form after teaching
“wavelet signal processing” courses in electrical engineering departments at MIT
and Tel Aviv University, and in applied mathematics departments at the Courant
Institute and Ecole Polytechnique (Paris).

In electrical engineering, students are often initially frightened by the use of
vector space formalism as opposed to simple linear algebra. The predominance
of linear time invariant systems has led many to think that convolutions and the
Fourier transform are mathematically sufficient to handle all applications. Sadly
enough, this is not the case. The mathematics used in the book are not motivated
by theoretical beauty; they are truly necessary to face the complexity of transient
signal processing. Discovering the use of higher level mathematics happens to
be an important pedagogical side-effect of this course. Numerical algorithms and
figures escort most theorems. The use of WAVELAB makes it particularly easy to
include numerical simulations in homework. Exercises and deeper problems for
class projects are listed at the end of each chapter.

In applied mathematics, this course is an introduction to wavelets but also to
signal processing. Signal processing is a newcomer on the stage of legitimate
applied mathematics topics. Yet, it is spectacularly well adapted to illustrate the
applied mathematics chain, from problem modeling to efficient calculations of
solutions and theorem proving. Images and sounds give a sensual contact with
theorems, that can wake up most students. For teaching, formatted overhead
transparencies with enlarged figures are available on the Internet:

http: / /www.cmap.polytechnique. fr/~mallat/Wavetour_fig/.

Francois Chaplais also offers an introductory Web tour of basic concepts in the
book at

http://cas.ensmp. fr/~chaplais /Wavetour_presentation/.

Not all theorems of the book are proved in detail, but the important techniques
are included. I hope that the reader will excuse the lack of mathematical rigor in
the many instances where I have privileged ideas over details. Few proofs are long;
they are concentrated to avoid diluting the mathematics into many intermediate
results, which would obscure the text.
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Course Design  Level numbers explained in Section 1.5.2 can help in designing
an introductory or a more advanced course. Beginning with a review of the Fourier
transform is often necessary. Although most applied mathematics students have
already seen the Fourier transform, they have rarely had the time to understand
it well. A non-technical review can stress applications, including the sampling
theorem. Refreshing basic mathematical results is also needed for electrical en-
gineering students. A mathematically oriented review of time-invariant signal
processing in Chapters 2 and 3 is the occasion to remind the student of elementary
properties of linear operators, projectors and vector spaces, which can be found
in Appendix A. For a course of a single semester, one can follow several paths,
oriented by different themes. Here are a few possibilities.

One can teach a course that surveys the key ideas previously outlined. Chapter
4 is particularly important in introducing the concept of local time-frequency de-
compositions. Section 4.4 on instantaneous frequencies illustrates the limitations
of time-frequency resolution. Chapter 6 gives a different perspective on the wavelet
transform, by relating the local regularity of a signal to the decay of its wavelet
coefficients across scales. It is useful to stress the importance of the wavelet van-
ishing moments. The course can continue with the presentation of wavelet bases
in Chapter 7, and concentrate on Sections 7.1-7.3 on orthogonal bases, multireso-
lution approximations and filter bank algorithms in one dimension. Linear and
non-linear approximations in wavelet bases are covered in Chapter 9. Depending
upon students’ backgrounds and interests, the course can finish in Chapter 10 with
an application to signal estimation with wavelet thresholding, or in Chapter 11 by
presenting image transform codes in wavelet bases.

A different course may study the construction of new orthogonal bases and
their applications. Beginning with the wavelet basis, Chapter 7 also gives an in-
troduction to filter banks. Continuing with Chapter 8 on wavelet packet and local
cosine bases introduces different orthogonal tilings of the time-frequency plane.
It explains the main ideas of time-frequency decompositions. Chapter 9 on linear
and non-linear approximation is then particularly important for understanding how
to measure the efficiency of these bases, and for studying best bases search proce-
dures. To illustrate the differences between linear and non-linear approximation
procedures, one can compare the linear and non-linear thresholding estimations
studied in Chapter 10. A

The course can also concentrate on the construction of sparse representations
with orthonormal bases, and study applications of non-linear diagonal operators in
these bases. It may start in Chapter 10 with a comparison of linear and non-linear
operators used to estimate piecewise regular signals contaminated by a white noise.
A quick excursion in Chapter 9 introduces linear and non-linear approximations
to explain what is a sparse representation. Wavelet orthonormal bases are then
presented in Chapter 7, with special emphasis on their non-linear approximation
properties for piecewise regular signals. An application of non-linear diagonal op-
erators to image compression or to thresholding estimation should then be studied
in some detail, to motivate the use of modern mathematics for understanding these
problems.

R
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A more advanced course can emphasize non-linear and adaptive signal pro-
cessing. Chapter 5 on frames introduces flexible tools that are useful in analyzing
the properties of non-linear representations such as irregularly sampled transforms.
The dyadic wavelet maxima representation illustrates the frame theory, with ap-
plications to multiscale edge detection. To study applications of adaptive repre-
sentations with orthonormal bases, one might start with non-linear and adaptive
approximations, introduced in Chapter 9. Best bases, basis pursuit or matching
pursuit algorithms are examples of adaptive transforms that construct sparse rep-
resentations for complex signals. A central issue is to understand to what extent
adaptivity improves applications such as noise removal or signal compression,
depending on the signal properties.

Responsibilities This book was a one-year project that ended up in a never will
finish nightmare. Ruzena Bajcsy bears a major responsibility for not encourag-
ing me to choose another profession, while guiding my first research steps. Her
profound scientific intuition opened my eyes to and well beyond computer vision.
Then of course, are all the collaborators who could have done a much better job
of showing me that science is a selfish world where only competition counts. The
wavelet story was initiated by remarkable scientists like Alex Grossmann, whose
modesty created a warm atmosphere of collaboration, where strange new ideas
and ingenuity were welcome as elements of creativity.

I am also grateful to the few people who have been willing to work with me.
Some have less merit because they had to finish their degree but others did it on
a voluntary basis. I am thinking of Amir Averbuch, Emmanuel Bacry, Francois
Bergeaud, Geoff Davis, Davi Geiger, Frédéric Falzon, Wen Liang Hwang, Hamid
Krim, George Papanicolaou, Jean-Jacques Slotine, Alan Willsky, Zifeng Zhang
and Sifen Zhong. Their patience will certainly be rewarded in a future life.

Although the reproduction of these 600 pages will probably not kill many
trees, I do not want to bear the responsibility alone. After four years writing and
rewriting each chapter, I first saw the end of the tunnel during a working retreat
at the Fondation des Treilles, which offers an exceptional environment to think,
write and eat in Provence. With WaveLas, David Donoho saved me from spending
the second half of my life programming wavelet algorithms. This opportunity was
beautifully implemented by Maureen Clerc and Jérome Kalifa, who made all the
figures and found many more mistakes than I dare say. Dear reader, you should
thank Barbara Burke Hubbard, who corrected my Franglais (remaining errors are
mine), and forced me to modify many notations and explanations. I thank her for
doing it with tact and humor. My editor, Chuck Glaser, had the patience to wait
but I appreciate even more his wisdom to let me think that I would finish in a year.

She will not read this book, yet my deepest gratitude goes to Branka with

whom life has nothing to do with wavelets.
Stéphane Mallat
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Preface to the second edition

Before leaving this Wavelet Tour, I naively thought that I should take advantage of
remarks and suggestions made by readers. This almost got out of hand, and 200
pages ended up being rewritten. Let me outline the main components that were
not in the first edition.

e Bayes versus Minimax Classical signal processing is almost entirely built
in a Bayes framework, where signals are viewed as realizations of a random
vector. For the last two decades, researchers have tried to model images
with random vectors, but in vain. It is thus time to wonder whether this
is really the best approach. Minimax theory opens an easier avenue for
evaluating the performance of estimation and compression algorithms. It
uses deterministic models that can be constructed even for complex signals
suchasimages. Chapter 10is rewritten and expanded to explain and compare
the Bayes and minimax points of view.

o Bounded Variation Signals Wavelet transforms provide sparse representa-
tions of piecewise regular signals. The total variation norm gives an intuitive
and precise mathematical framework in which to characterize the piecewise
regularity of signals and images. In this second edition, the total variation is
used to compute approximation errors, to evaluate the risk when removing
noise from images, and to analyze the distortion rate of image transform
codes.

o Normalized Scale Continuous mathematics give asymptotic results when
the signal resolution N increases. In this framework, the signal support is

xx
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PREFACE TO THE SECOND EDITION xxi

fixed, say [0, 1], and the sampling interval N~! is progressively reduced. In
contrast, digital signal processing algorithms are often presented by nor-
malizing the sampling interval to 1, which means that the support [0, V]
increases with N. This new edition explains both points of views, but the
figures now display signals with a support normalizedto [0, 1], in accordance
with the theorems.

Video Compression Compressing video sequences is of prime importance
for real time transmission with low-bandwidth channels such as the Internet
or telephone lines. Motion compensation algorithms are presented at the
end of Chapter 11.

i
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(f,8
171l

Inner product (A.6).
Norm (A.3).

fIn] = O(g[n]) Order of: there exists K such that f[n] < Kg[n].
fln] = o(g[n]) Small order of: lim,, 4 g&l =0.

fln] ~ gln]
A< +00
A>B

*

Z
Lx,
[%]

nmod N

Sets
N

Z

R
Rt
C

Signals
f(r)
fn]

Equivalent to: f[n] = O(g[n]) and g[n] = O(f[n}).

A is finite.

A is much bigger than B.

Complex conjugate of z € C.

Largest integer n < x.

Smallest integer n > x.

Remainder of the integer division of n modulo N.

Positive integers including 0.
Integers.

Real numbers.

Positive real numbers.
Complex numbers.

Continuous time signal.
Discrete signal.
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4[n]
Lap)

Spaces
Co
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COO
W (R)
L2(R)
LP(R)
¥(2)
I’(Z)
CN
UgV
UV

Operators

Id
f()
f(l’)(t)

V£ix,y)

f*g(t)
fxgln]
f®gn

Transforms

7
[k

|

Sf(u,s)
PSf(u?g)
Wf(u,s)

PWf(u’ﬁ)

PVf(uv

3

Af(,€)

Probability

b'e
E{X}
H(X)

NOTATION

Dirac distribution (A.30).
Discrete Dirac (3.16).
Indicator function which is 1 in [, b] and O outside.

Uniformly continuous functions (7.240).

p times continuously differentiable functions.
Infinitely differentiable functions.

Sobolev s times differentiable functions (9.5).
Finite energy functions [ |f(f)|* dr < +oo0.
Functions such that [ |f(f)|? dr < +o0.

Finite energy discrete signals 3_7°° | f[n]|* < +o0.

Discrete signals such that 327 | f[n]|P < +o0.
Complex signals of size N.
Direct sum of two vector spaces.

Tensor product of two vector spaces {A.19).

Identity.
Derivative ﬁd(tﬁ.
Derivative /%) of order p .
Gradient vector (6.55).
Continuous time convolution (2.2).
Discrete convolution (3.17).

Circular convolution (3.57)

Fourier transform (2.6), (3.23).

Discrete Fourier transform (3.33).

Short-time windowed Fourier transform (4.11).
Spectrogram (4.12).

Wavelet transform (4.31).

Scalogram (4.55).

Wigner-Ville distribution (4.108).

Ambiguity function (4.24).

Random variable.
Expected value.
Entropy (11.4).
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NOTATION
Ha(X) Differential entropy (11.20).
Cov(X;,X,) Covariance (A.22).

Fln Random vector.

Rrk] Autocovariance of a stationary process (A.206).
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