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Preface

The fourth edition of this text is different from the third edition in three ways. First,
there is an acute emphasis on typographical and mathematical accuracy. Second, a new
chapter, Chapter 14, has been added, which presents and discusses equilibria in bina-
ry systems in temperature-pressure-composition space. An understanding of the influ-
ence of pressure on phase equilibria is particularly necessary given the increase in the
number of methods of processing materials systems at low pressures or in a vacuum.
The major improvement, however, is the inclusion of a CD-Rom to supplement
the text. This work, which is titled “Examples of the Use of Spreadsheet Software
for Making Thermodynamic Calculations™ is a document produced by Dr. Arthur
Morris, Professor Emeritus of the Department of Metallurgical Engineering at the
University of Missouri—Rolla. The document contains descriptions of 22 practical
examples of the use of thermodynamic data and typical spreadsheet tools. Most of
the examples use the spreadsheet Microsoft® Excel* and others make use of a soft-
ware package produced by Professor Morris called THERBAL. As Professor Morris
states, “The availability of spreadsheet software means that more complex thermo-
dynamics problems can be handled, and simple problems can be treated in depth.”
I express my gratitude to Professor Morris for providing this supplement.

David R. Gaskell
Purdue University

A Word on the CD-Rom

The CD contains data and descriptive material for making detailed thermodynamic
calculations involving materials processing. The contents of the CD are described in
the text file. CD Introduction.doc, which you should print and read before trying to
use the material on the CD.

There are two Excel workbooks on the disk: ThermoTables.xls and Ther-
moXmples.xls. They contain thermodynamic data and examples of their use by
Excel to solve problems and examples of a more extended nature than those in the
text. The CD also contains a document describing these examples, XmpleExplana-
tion.doc, which is in Microsoft® Word* format. You will need Word to view and
print this document.

Dr. Arthur E. Morris
Thermart Software
http://home.att.net/~thermart

“Microsoft, Lixcel and Word are cither registered trademarks or trademarks of Microsott Corporation in
the United States and/or other countries.
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Chapter 1

INTRODUCTION AND DEFINITION OF TERMS

1.1 INTRODUCTION

Thermodynamics is concerned with the behavior of matter. where matter is anything
that occupies space. and the matter which is the subject of a thermodynamic analysis
is called a system. In materials science and engineering the systems to which ther-
modynamic principles are applied are usually chemical reaction systems. The cen-
tral aim of applied thermodynamics is the determination of the effect of environment
on the state of rest (equilibrium state), of a given system, where environment is gen-
erally determined as the pressure exerted on the system and the temperature of the
system. The aim of applied thermodynamics is thus the establishment of the rela-
tionships which exist between the equilibrium state of existence of a given system
and the influences which are brought to bear on the system.

1.2 THE CONCEPT OF STATE

The most important concept in thermodynamics is that of szuze. If it were possible to
know the masses. velocities, positions. and all modes of motion of all of the con-
stituent particles in a system. this mass of knowledge would serve to describe the
microscopic state of the system. which, in turn, would determine all of the properties
of the system. In the absence of such detailed knowledge as is required to determine
the microscopic state of the system, thermodynamics begins with a consideration of
the properties of the system which, when determined. define the macroscopic state
of the system: i.e., when all of the properties are fixed then the macroscopic state of
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the system is fixed. It might seem that, in order to uniquely fix the macroscopic, or
thermodynamic, state of a system, an enormous amount of information might be
required; i.e., all of the properties of the system might have to be known. In fact, it
is found that when the values of a small number of properties are fixed then the val-
ues of all of the rest are fixed. Indeed, when a simple system such as a given quan-
tity of a substance of fixed composition is being considered, the fixing of the values
of two of the properties fixes the values of all of the rest. Thus only two properties
are independent, which, consequently, are called the independent variables, and all
of the other properties are dependent variables. The thermodynamic state of the sim-
ple system is thus uniquely fixed when the values of the two independent variables
are fixed.

In the case of the simple system any two properties could be chosen as the inde-
pendent variables, and the choice is a matter of convenience. Properties most
amenable to control are the pressure P and the temperature T of the system. When P
and T are fixed, the state of the simple system is fixed, and all of the other proper-
ties have unique values corresponding to this state. Consider the volume V of a fixed
quantity of a pure gas as a property, the value of which is dependent on the values
of P and T. The relationship between the dependent variable V and the independent
variables P and T can be expressed as

V=WPrT) (1.1

The mathematical relationship of V to P and T for a system is called an equation
of state for that system, and in a three-dimensional diagram, the coordinates of
which are volume, temperature, and pressure, the points in P-V-T space which rep-
resent the equilibrium states of existence of the system lie on a surface. This is
shown in Fig. 1.1 for a fixed quantity of a simple gas. Fixing the values of any two
of the three variables fixes the value of the third variable. Consider a process which
moves the gas from state 1 to state 2. This process causes the volume of the gas to
change by

AV=V2“V}

This process could proceed along an infinite number of paths on the P-V-T surface,
two of which, | - a — 2and 1 - b — 2, are shown in Figure 1.1. Consider the
path I — « — 2. The change in volume is

Av: VZ - V|
(vu_ VI) + (VZ - V“)

i

where 1 — « occurs at the constant pressure Py and ¢ — 2 occurs at the constant

temperature 7-:
Ty
fav
7, aT P,
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> T
/ ;S P2 Figure 1.1 The equilibri-
/ / um states of existence of
T1 T2 a fixed quantity of gas in
P P-V-T space.

and

Py
Y
(Vy = V,) =J <~) dp
P, oP e
7./ . P,/
v oV
szf (‘,—\- (1T+f <~> dP (12)
; \oT /., . \dP/;,

'

Thus

Similarly for the path 1 = b6 — 2,

Pl av
(vh— VI) = J (’,‘_> dP
b, aP 7
T
fav
(Vo= V) = [ (_) dp
T aT /p,

F Py 7.
oV T
A=J <(‘> dP+J (dv> dT (1.3)
P| ()P T, T dT p:

and

and, hence, again
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Egs. (1.2) and (1.3) are identical and are the physical representations of what is
obtained when the complete differential of Eq. (1.1), i.e.,

av av
=(Z)ap+(—=)dr 1.4
dv (aP)TdP (E)T)P (1.4)

is integrated between the limits P, T, and Py, T}.

The change in volume caused by moving the state of the gas from state 1 to
state 2 depends only on the volume at state 1 and the volume at state 2 and is inde-
pendent of the path taken by the gas between the states 1 and 2. This is because
the volume of the gas is a state function and Eq. (1.4) is an exact differential of the
volume V.*

1.3 SIMPLE EQUILIBRIUM

In Figure 1.1 the state of existence of the system (or simply the state of the system)
lies on the surface in P-V-T space; i.e., for any values of temperature and pressure
the system is at equilibrium only when it has that unique volume which corresponds
to the particular values of temperature and pressure. A particularly simple system is
illustrated in Figure 1.2. This is a fixed quantity of gas contained in a cylinder by a
movable piston. The system is at rest, i.e., is at equilibrium, when

I. The pressure exerted by the gas on the piston equals the pressure exerted by the
piston on the gas, and

Figure 1.2 A quantity of
gas contained in a cylinder
by a piston.

*The properties of exact differential equations are discussed in Appendix B.
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2. The temperature of the gas is the same as the temperature of the surroundings
(provided that heat can be transported through the wall of the cylinder).

The state of the gas is thus fixed, and equilibrium occurs as a result of the establish-
ment of a balance between the tendency of the external influences acting on the sys-
tem to cause a change in the system and the tendency of the system to resist change.
The fixing of the pressure of the gas at P, and temperature at T, determines the state
of the system and hence fixes the volume at the value V. If, by suitable decrease in
the weight placed on the piston, the pressure exerted on the gas is decreased to P,
the resulting imbalance between the pressure exerted by the gas and the pressure
exerted on the gas causes the piston to move out of the cylinder. This process
increases the volume of the gas and hence decreases the pressure which it exerts on
the piston until equalization of the pressures is restored. As a result of this process
the volume of the gas increases from V, to V5. Thermodynamically, the isothermal
change of pressure from P, to P, changes the state of the system from state | (char-
acterized by P, T), to state 2 (characterized by P,, T)), and the volume, as a depen-
dent variable, changes from the value V, to V,.

If the pressure exerted by the piston on the gas is maintained constant at P, and
the temperature of the surroundings is raised from 7 to 7. the consequent temper-
ature gradient across the cylinder wall causes the flow of heat from the surroundings
to the gas. The increase in the temperature of the gas at the constant pressure P,
causes expansion of the gas, which pushes the piston out of the cylinder, and when
the gas is uniformly at the temperature 7, the volume of the gas is V. Again, ther-
modynamically, the changing of the temperature from T, to T, at the constant pres-
sure P, changes the state of the system from state 2 (P,, T)) to state 3 (P,, T5), and
again, the volume as a dependent variable changes from V; in the state 2 to V; in the
state 3. As volume is a state function, the final volume V; is independent of the order
in which the above steps are carried out.

1.4 THE EQUATION OF STATE OF AN IDEAL GAS

The pressure-volume relationship of a gas at constant temperature was determined
experimentally in 1660 by Robert Boyle, who found that, at constant T,

[
Px—
v

which is known as Boyle's law. Similarly, the volume-temperature relationship of a
gas at constant pressure was first determined experimentally by Jacques-Alexandre-
Cesar Charles in 1787. This relationship, which is known as Charles’ law, is. that at
constant pressure

VxT

Thus, in Fig. 1.1, which is drawn for a fixed quantity of gas, sections of the P-V-T
surface drawn at constant 7 produce rectangular hyperbolae which asymptotically
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approach the P and V axes, and sections of the surface drawn at constant P produce
straight lines. These sections are shown in Fig. 1.3¢ and Fig. 1.3b.

In 1802 Joseph-Luis Gay-Lussac observed that the thermal coefficient of what
were called “"permanent gases™ was a constant. The coefficient of thermal expansion,
a, is defined as the fractional increase, with temperature at constant pressure, of the

volume of a gas at 0°C: that is
I ( av)
o= —
Vo\aoT P

where Vj, is the volume of the gas at 0°C. Gay-Lussac obtained a value of 1/267 for
a, but more refined experimentation by Regnault in 1847 showed « to have the value
1/273. Later it was found that the accuracy with which Boyle’s and Charles’ laws
describe the behavior of different gases varies from one gas to another and that, gen-
erally, gases with lower boiling points obey the laws more closely than do gases with
higher boiling points. It was also found that the laws are more closely obeyed by all
gases as the pressure of the gas is decreased. It was thus found convenient to invent
a hypothetical gas which obeys Boyle’s and Charles’ laws exactly at all temperatures
and pressures. This hypothetical gas is called the ideal gas, and it has a value of «
of 1/273.15.

The existence of a finite coefficient of thermal expansion sets a limit on the
thermal contraction of the ideal gas; that is, as a equals 1/273.15 then the fractional
decrease in the volume of the gas, per degree decrease in temperature, is 1/273.15 of
the volume at 0°C. Thus, at —273.15°C the volume of the gas is zero. and hence the
limit of temperature decrease, —273.15°C, is the absolute zero of temperature. This
defines an absolute scale of temperature, called the ideal gas temperature scale,
which is related to the arbitrary celsius scale by the equation

T(degrees absolute) = T(degrees celsius) + 273.15
combination of Boyle's law
P\V(T.Py) = PV(T.P)
and Charles’ law

V(P()’To) _ V(P(hT)

Ty T
where
P, = standard pressure (| atm)
T, = standard temperature (273.15 degrees absolute)
VIT.P) = volume at temperature 7 and pressure P
gives

PV PV, .
T T, = constant (1.5)
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Figure 1.3 («) The variations, with pressure, of the volume of 1 mole of ideal gas at
300 and 1000 K. (b) The variations, with temperature, of the volume of I mole of
ideal gas at 1, 2, and § atm.



