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Preface

The creative process of mathematics, both historically and individually,
may be described as a counterpoint between theorems and examples. Al-
though it would be hazardous to claim that the creation of significant
examples is less demanding than the development of theory, we hn.ve dis-
covered that focusing on examples is a particularly expeditious means of _
involving undergraduate mathematics students in actual research. Not only
are examples more concrete than theorems—and thus more accessible—but
they cut across individual theories and make it both appropriate and neces-
sary for the student to explore the entire literature in journals as well as
texts. Indeed, much of the content of this book was first outlined by under-
graduate research teams working with the authors at Saint Olaf College
during the summers of 1967 and 1968.

In compiling and editing material for this book, both the authors and
their undergraduate assistants realized a substantial increment in topologi-
eal msxght as a direct result of chasing through details of each example. We
hope our readers will have a similar experience. Each of the 143 examples in
this book provides innumerable concrete illustrations of definitions, theo-
rems, and general methods of proof. There is no better way, for instance, to
learn what the definition of metacompactness really means than to try to
prove that Niemytzki’s tangent disc topology is not metacompact.

The search for counterexamples is as lively and creative an activity as
can be found in mathematics research. Topology particularly is replete
with unreported or unsolved problems (do you know an example of a
Hausdorff topological space which is separable and locally compact, but
not o-compact?), and the process of modifying old examples or creating
new ones requires a wild and uninhibited geometric imagination. Far from
providing all relevant examples, this book provides a context in which to .
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ask new questions and seek new answers. We hope that each reader will
share (and not just vicaripusly) in the excitement of the hunt.

Counterexamples in Topology was originally designed, not as a text, but
as a course supplement and reference work for undergraduate and graduate
students of general topology, as well as for their teachers. For such use, the
reader should scan the book and stop occasionally for a guided tour of the
various examples. The authors have used it in this manner as a supplement
to a standard textbook and found it to be a valuable aid.

" There are, however,.two rather different circumstances under which this
monograph could most appropriately be used as the exclusive reference in
a topology course. An instructor who wishes to develop his bwn theory in
class lecture may well find the succinet exposition which precedes the
examples an appropriate minimal source of definitions and structure. On
the other hand, Counterexamples in Topology may provide sufficiently few
proofs to serve as a basis for an inductive, Moore-type topology course. In
either case, the book gives the instructor the flexibility to design his own
course, and the students a wealth of hlstorlcally and mathematically mg-
nificant examples.

A counterexample, in its mest restricted sense, is an example which dis-
proves a famous conjecture. We choose to interpret the word more broadly,
particularly since all examplés of general topology, especially as viewed by
beginning students, stand in contrast to the canon of the real line. So in
this sense any example which in some respect stands opposite to the reals
is truly a Gegenbeispiel. Having said that, we should offer some rationale
for our inclusions and omissions. In general we opted for examples which
were necessary to distinguish definitions, and for famous, well kriown, or

_ssmply unusual examples even if they exhibited no new properties. Of course,

what is well known to others may be unknown to us, so we acknowledge
with regret the probable omission of certain deserving examples.

In choosing among competing definitions we generally adopted the
strategy of making no unnecessary assumptions.. With rare exception
therefore, we define all properties for all-topological spaces, and not just
for, for instance, Hausdorff spaces.

Often we give only a brief outline or hint of a proof ; this is intentional, but
we caution readers against inferring that we believe the result trivial.
Rather, in most cases, we believe the result to be a worthwhile exercise
which could be done, using the hint, in a reasonable period of time. Some
of the more difficult steps are discussed in the Notes at the end of the bock.
' The examples are ordered very roughly by their appropriateness to the

_ definitions as set forth in the first section. This is a very crude guide whose
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only reliable consequence is that the numerical order has no correlation
with the difficulty of the example. To aid an instructor in recommending
examples for study, we submit the following mforma.l clasmﬁcatxon by"_
sophistication: ©

Elementary: 1-25, 27-28, 30—34 38 40-47, 49-50, 52— 59 62-64,
~73-74, 81, 86-89, 97, 104, 109, 115-123, 132-135, 137,
139-140.
Intermediate: 26, 29, 35-37, 39, 48, 51, 65-72, 75-80, 82-85, 90-91,
93-96, 98-102, 105—108 113-114, 124, 126-127, 130, 136,
138, 141.
* Advanced: 60-61, 92, 103, 116-112, 125, 128-129, 131, 142 143.

The discussion of each example is geared to its general level: what is proved
in detail in an elementary example may be assumed without comment in &
more advanced example.

In many ways the most useful part of this book for reference may be the
appendices. We have gathered there in tabular form a composite picture
of the most significant counterexamples, so a person who is searching for
Hausdorff nonregular spaces can easily discover a few. Notes are provided
which in addition to serving as a guide to the Bibliography, provide added
detail for many results assumed in the first two sections. A collection of
problems related to the examples should prove most helpful if the book is
used as a text. Many of the problems ask for justification of entries in the
various tables where these entries are not explicitly discussed in the example.
Many easy problems of the form “‘justify the assertion that . . .” have not
been listed, since these can readily be invented by the mstructor accoxdmg
to his own taste.

In most instances, the index includes only the initial (or defining) use of
a term. For obvious reasons, no attempt has been made to include in the
index all occurrences of a property throughout the book. But the General
Reference Chart (pp. 170-179) provides a complete cross-tabulation of
examples with properties and should facilitate the quick location of exam-
- ples of any specific type. The chart was prepared by an IBM 1130 using a

program which enables the computer to derive, from the theorems dis-
cussed in Part I, the properties for each example which follow loglca.lly
from those discussed in Part II.

Examples are numbered consecutively and referred to by their numbers
in all charts. In those few cases where a minor but inelegant modification of
an example is needed to produce the desired concatenation of properties,
we use a decimal to indicate a particular point within an example: 23.17

-means the 17th point in Example 23.



vi Preface

The research for this book was begun in the summer of 1967 by an’under-
graduate research group working with the authors under a grant from the
National Science Foundation. This work was continued by the authors
with support from a grant by the Research Corporation, and again in the
summer of 1968 with the assistance of an N.S.F. sponsored undergraduate
research ‘group. The students who participated in the undergraduate re-
search groups were John Feroe, Gary Gruenhage, Thomas Leffler, Mary 4
Malcolm, Susan Martens, Linda Ness, Neil Omvedt, Karen Sjoquist, and
Gail Tverberg. We acknowledge that theirs was a twofold contribution:
not only did they explore and develop many examples, but they proved by
their own example the efficacy of examples for the undergraduat.e study of
topology.

Finally, we thank Rebecca Langholz who with precision, forbearange, and
unfailing good humor typed in two years three complete prehmmar} edi-
tions of this manusecript.

Northfield, Minn. ‘ Lynn Arthur Steen
January 1970 J. Arthur Seebach, Jr.
\

Pref}rce to the\Second Edition

In the eight years since the onglnal edition of\Counterexamples ap--
peared, many readers have written pomtmg out errors, filling in gaps jn the
reference charts, and supply\ng many answers to the rhetorical question
in our preface. In these same eight years research in \topology pro\mced
many new results'on the fror\tler of metnzatxon theoyy, set theory, to-
pology and logic. ! 0‘

This Second Edition contains corrections to errors in the first edition,
reports of r%cent developments in certal*x examples with current refer-
ences, and, most importantly, a revised version of the first author’s pa-
per “Conjectures and counterexamples in metrization theory” which
appeared in the American Mathematical Monthly (Vol. 79, 1972, pp.
113-132). This paper appears as Part III of this Second Edition by per-
mission of the Matheématical Association of America. ' b-

We would like to thank all who have taken the time to write with
corrections and addenda, and especially Eric van Douwen for his exten-
sive notes op the original edition which helped us fill in gaps and correct
errors. The interest of such readers and of our new publisher Spnnger—

Verlag has made this second edition possible.

Northfield, Minn. _ Lynn Arthur Steen
April 1978 - J. Arthur Seebach, Jr.
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SECTION 1
General Introduction

A topological space is a pair (X,r) consisting of a set X and a collec-
tion r of subsets of X, called open sets, satisfying the following axioms:

O,: The union of open sets is an open set.
O:: The finite intersection of open sets is an open set.
Os: X and the empty set & are’ open sets. :

The collection 7 is called a topology for X. The topological space (X,r) is'
sometimes referred to as the space X when it is clear which topology X

carries.

If 71 and 7, are topologies for a set X 7, is said to be coarser (or weaker
or smaller) than , if every open set of 7, is an open set of 7,. 72 is then said
to be finer (or stronger or larger) than r,, and the relationship is expressed
as 11 < 7. Of course, as sets of sets, 7, € 7.. On a set X, the coarsest topol-
ogy is the indiscrete topology (Example 4), and the finest topology is the
discrete topolggy (Example 1). The ordering < is only a partial ordering,
since two.topologies may not be compargble (Example 8.8). .

In a topological space (X,r), we define a subset of X to be closed if its
complement is an open set of X, that is, if its complement is an element of r.
The De Morgan laws imply that closed sets, being complements of open-
sets have the following properties:

Ci: The intersection of closed" setsis a closed set.
C:: The finite union of closed sets is a closed set."
Cs: X and the empty set & are both closed.

Itis posszble that a subset be both open and closed (Example 1), or that a

subset be neither open nor closed (Examples 4 and 28).
An F,-get is a set whlch can be written as the union of a countable col-

.
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lection of closed sets; a G;-set is a set which can be written as the inter-
section of a countable collection of open sets. The complement of every
F,-set is a Gs-set and conversely. Since a single set is, trivially, a countable
collection of sets, closed sets are F,-sets, but not conversely (Example 19).
Furthermore, closed sets need not be Gi-sets (Example 19). By complemen-
tation analogous statements hold concerning open sets.

Closely related to the concept of an open set is that of a neighborhood.
In a space (X,r), a: neighborhood N, of a set A, where-A may be a set con-
sisting of a single point, is any subset of X which contains an open set con-
taining 4. (Some authors require that N4 itself be open; we call such sets
open neighborhoads.) A set which is a neighborhood of each of its points
is open since it can be expressed as the union of open sets containing each
of its points. )

Any collection § of subsets of X may be used as a subbasis (or subbase)
to generate a topology for X. This is done by taking as open sets of r all
sets which can be formed by the union of finite interséctions of sets in §,
together with & and X. If the union of subsets in a subbasis § is'the set X
and if each point contained in the intersection of two subbasis elements is
also contained in-a subbasis element contained in-the intersection, § is
called a basis (or base) for 7. In this case, r is the collection of all sets which
can be written as a union of elements of §. Finite intersections need not be
taken first, since each finite intersection is already a union of elements of 8.
If two bases (or subbases) generate the same topology, they are said to be
equivalent (Example 28). A local basis at the point z € X is a colléction
of open neighborhoods of = with the property that every open set contain-

-ing z contains some set in the collection.

Given a topological space (X,r), a topology 7y can be defined for any
subset Y of X by taking as open sets in ry every set which is the intersec-
tion of Y and an open set in 7. The pair (Y;ry) is called a subspace of
(X,7), and 7y is called the induced (or relative, or subspace) topology
for Y. A set U C Y is said to have a particular property relative to Y
(such as open relative to Y) if U has the property in the subspace (¥,ry).
A set Y is said to have a property whith has been defined only for topo-
logical spaces if it has the property when considered as a subspace. If for
a particular property, every subspace has the property whenever a space
does, the property is said to be hereditary. If every closed subset when

considered as a subspace has a property whenever the space has that

property, that property is said to be weakly hereditary.

An important example of a weakly hereditary property is compactness.
A space X is said to be compact if from every open cover, that is, a
collection of open sets whose union contains X, one can select a finite
subcollection whose unlion also contains X. Every closed subset Y of a
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compact space is compact, since if {O.} is an open cover for Y, {0.} U
(X —Y) is an open cover for. X. From {0,} \U-(X — Y), one can choose
a finite subcollection covering X, and from this one can choose an appro-
priate cover for ¥ containing only elements of {O,}] simply by omitting
X ~ Y. A compact subset of a compact space need not be closed (Exa.mples
4, 18) S

Limit Points

A point p is a limit point of a set A if every open set containing p con-
tains at least one point of A distinct from p. (If the point of A4 is not re-
quired to be distinct from p, p is called an adherent point.) Particular
kinds of limit points are w~accumulation points, for which every open

set containing p must contain infinitely many points of 4; and condensa- -

tion points, for which every open set containing p must contain uncount-
ably many points of 4. Examples 8 and 32 distinguish these definitions.
The concept of limit point may also be defined for sequences of not
necessarily distinct points. A point p is said to be a limit point of a
sequence {r,}, n = 1, 2, 3, . .. if every open set containing:p contains
all but finitely many terms of the sequence. The sequence is then said to
converge to the point p. A weaker condition on p is that every open set
containing p contains infinitely many terms of the sequence. In this case, p
is called an accumulation point of the sequence. It is possible that a
sequence has uncountably many limit points (Example 4), both a limit
point and an accumulation point that is not a limit point (Example 53),
or a single accumulation point that is not a limit point (Example 28).
Since a sequence may be thought of as a special type of ordered set, each
sequence has associated with it, in a natural way, the set consisting of its
elements. On the other hand, every countably infinite set- has associated
with it many sequences whose terms are points of the set. There is little
relation between the limit points of a sequence and the limit points of its
associated set. A point may be a limit point of a sequence, but only an

“adherent point of the associated set (Example 1). If the points of the

sequence are distinct, any accumulation point (and therefore any limit
point) of the sequence is an «-accumulation point of the associated set.
Likewise, any w-accumulation point of a countably infinite set is also an
accumulation point (but not necessarily a limit point) of any sequence
corresponding to the set. Not too surprisingly, & point may be a limit point
of a countably infinite set, but a corresponding sequence may have no
limit or accumulation point (Example 8). '

If A is a subset of a topological space X, the derived set of the set Adis
the collection of all limit points of A. Generally this includes some points -



