

4200400678

New York, New York

Columbus, Ohio Woodland Hills, California

Peoria, Illinois

A Glencoe Program

Glencoe Science Voyages

California Student Edition California Teacher Wraparound Edition Assessment

Chapter Review

California Science Content Standards Practice Ouestions

Performance Assessment

Assessment—Chapter and Unit Tests

ExamView Test Bank Software

Performance Assessment in the Science

Classroom

Alternate Assessment in the Science Classroom

Study Guide for Content Mastery, SE and TE Chapter Overview Study Guide, SE and TE

Reinforcement

Enrichment

Critical Thinking/Problem Solving

Multicultural Connections

Activity Worksheets

Laboratory Manual, SE and TE

Science Inquiry Activities, SE and TE

California Home Involvement

Teaching Transparencies

Section Focus Transparencies

Science Integration Transparencies

Spanish Resources

California Lesson Plans

Lab and Safety Skills in the Science Classroom

Cooperative Learning in the Science Classroom

Exploring Environmental Issues

MindJogger Videoquizzes and Teacher Guide

English/Spanish Audiocassettes

Interactive Lesson Planner CD-ROM

Interactive CD-ROM

Internet Site

Using the Internet in the Science Classroom

The "Test-Taking Tip" and "Test Practice" features in this book were written by The Princeton Review, the nation's leader in test preparation. Through its association with McGraw-Hill, The Princeton Review offers the best way to help students excel on standardized assessments.

The Princeton Review is not affiliated with Princeton University or Educational Testing Service.

Glencoe/McGraw-Hill

A Division of The McGraw-Hill Companies

Copyright © 2001 by the McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior written permission of the publisher.

The "Science Connection" features found in each chapter and the unit opening pages of this textbook were designed and developed by the National Geographic Society's Education Division, copyright © 2001 National Geographic Society. The name "National Geographic Society" and the yellow border rectangle are trademarks of the Society, and their use, without prior written permission, is strictly prohibited.

Send all inquiries to: Glencoe/McGraw-Hill 8787 Orion Place Columbus, OH 43240

ISBN 0-07-823978-8

Printed in the United States of America.

3 4 5 6 7 8 9 10 071/043 06 05 04 03 02 01

Series Authors

Alton Biggs

Biology Instructor Allen High School Allen, Texas

John Eric Burns

Science Teacher Ramona Jr. High School Chino, California

Lucy Daniel, Ph.D.

Teacher, Consultant Rutherford County Schools Rutherfordton, North Carolina

Cathy Ezrailson

Science Department Head Oak Ridge High School Conroe, Texas

Ralph Feather, Jr., Ph.D.

Science Department Chair Derry Area School District Derry, Pennsylvania

Patricia Horton

Math and Science Teacher Summit Intermediate School Etiwanda, California

Thomas McCarthy, Ph.D.

Science Department Chair St. Edwards School Vero Beach, Florida

Ed Ortleb

Science Consultant St. Louis Public Schools St. Louis, Missouri

Susan Leach Snyder

Science Department Chair Jones Middle School Upper Arlington, Ohio

Eric Werwa, Ph.D.

Department of Physics and Astronomy Otterbein College Westerville, Ohio

National Geographic Society

Educational Division Washington D.C.

Contributing Authors

Al Janulaw

Science Teacher Creekside Middle School Rohnert Park, California

Penny Parsekian

Science Writer for The National Geographic Society New London, Connecticut

Gerry Madrazo, Ph.D.

Mathematics and Science Education Network University of North Carolina, Chapel Hill Chapel Hill, North Carolina

Series Consultants

Chemistry

Douglas Martin, Ph.D.

Chemistry Department Sonoma State University Rohnert Park, California

Cheryl Wistrom, Ph.D.

Associate Professor of Chemistry Saint Joseph's College Rensselaer, Indiana

Earth Science

Maureen Allen

Science Resource Specialist Irvine Unified School District Laguna Hills, California

Tomasz K. Baumiller, Ph.D.

Museum of Paleontology University of Michigan Ann Arbor, Michigan

Connie Sutton, Ph.D.

Department of Geoscience Indiana University Indiana, Pennsylvania

Physics

Thomas Barrett, Ph.D.

Department of Physics The Ohio State University Columbus, Ohio

David Haase, Ph.D.

Professor of Physics North Carolina State University Raleigh, North Carolina

Life Science

William Ausich, Ph.D.

Department of Geological Sciences The Ohio State University Columbus, Ohio

Dennis Stockdale

Asheville High School Asheville, North Carolina

Daniel Zeigler, Ph.D.

Director
Bacillus Genetic Stock Center
The Ohio State University
Columbus, Ohio

Reading

Nancy Farnan, Ph.D.

School of Teacher Education San Diego State University San Diego, California

Gary Kroesch

Mount Carmel High School San Diego, California

Safety

Mark Vinciguerra

Lab Safety Instructor Department of Physics The Ohio State University Columbus, Ohio

Curriculum

Tom Custer, Ph.D.

Maryland State Department of Education Challenge/Reconstructed Schools Baltimore, Maryland

Series Reviewers

Ihina Alvarado

Potrero Hill Middle School for the Arts San Francisco, California

Richard Cheeseman

Bert Lynn Middle School Torrance, California

Linda Cook

Rider High School Wichita Falls, Texas

John B. Davis

Niagara-Wheatfield Central School Sanborn, New York

Shirley Ann DeFilippo

Timothy Edwards Middle School South Windsor, Connecticut

Janet Doughty

H J McDonald Middle School New Bern, North Carolina

Jason Druten

Jefferson Middle School Torrance, California

Lin Harp

Magellan Middle School Raleigh, North Carolina

Doris Holland

West Cary Middle School Raleigh, North Carolina

Deborah Huffine

Noblesville Intermediate School Noblesville, Indiana

Paul Osborne

DeValls Bluff High School DeValls Bluff, Arkansas

Erik Resnick

Robert E. Peary Middle School Gardena, California

Robert Sirbu

Lowell Junior High School Oakland, California

Michael Tally

Wake County Public Schools Raleigh, North Carolina

Cindy Williamson

Whiteville City Schools Whiteville, North Carolina

Maurice Yaggi

Middlebrook School Wilton, Connecticut

Donna York

Anchorage School District Anchorage, Alaska

Activity Testers

Clayton Millage Science Teacher Lynden Middle School

Lynden Middle School Lynden, Washington Science Kit and Boreal Laboratories Tonawanda, New York

GRADE SEVEN: FOCUS ON LIFE SCIENCE

What are science content standards and why does California have them? Standards are guidelines for schools, students, and parents that describe the essential science concepts and skills for understanding the world in which we live. In 1999, The California State Board of Education established science content standards, and these standards will be the basis for state assessments that measure student achievement in science.

ADDITIONAL CONTENT STANDARDS FOR GRADE 7

- California Science Standards and Case Studies, found at the back of the book
- California Science Content Standards Assessment Practice booklets
- Chapter Assessments at the end of each chapter
- Science Voyages Website at www.glencoe.com/sec/science/ca

Cell Biology

- All living organisms are composed of cells, from just one to many trillions, whose details usually are viible only through a microscope.. As the basis for understanding this concept, students know:
 - **a.** cells function similarly in all living organisms
 Sections 2-1, 2-2, 3-1, 3-2, 3-3, 4-1, 4.-2, page 628
 - b. the characteristics that distinguish plant cells from animal cells, chloroplasts and cell walls. Sections 2.2, 4-1, page 629
 - **c.** the nucleus is the repository for genetic information in plant and animal cells.

 Sections 4-1, 4-3, page 630
 - **d.** mitochondria liberate energy for the work that cells do, and chloroplasts capture sunlight energy for photosynthesis.

Sections 2-2, 3-3, page 631, 632

- e. cells divide to increase their numbers through a process of mitosis, which results in two daughte5r cells with identical sets of chromosomes. Sections 4-1, 5-1, page 632
- **f.** as multicellular organisms develop, their cells differentiate. Sections 2-2, 21-2, page 633

Genetics

- A typical cell of any organism contains genetic instructions that specify its traits. Those traits may be modified by environmental influences. As the basis for understanding this concept, students know:
 - **a.** the differences between the life cycles and reproduction of sexual

- and asexual organisms. Sections 4-1, 4-2, page 634
- b. sexual reproduction produces offspring that inherit half their genes from each parent.
 Sections 4-1, 4-2, 5-1, 6-1, page 634
- **c.** an inherited trait can be determined by one or more genes.

 Sections 4-3, 6-1, 6-2, 6-3, pages 634
- **d.** plant and animal cells contain many thousands of different genes, and typically have two copies of every gene. The two copies (or alleles) of the gene may or may not be identical, and one may be dominating in determining the phenotype while the other is recessive.

 Sections 6-2, 6-2, 6-3, page 635
- e. DNA is the genetic material of living organisms, and is located in the chromosomes of each cell. Sections 2-2, 4-3, 6-1, 6-2, page 635

Evolution

- 3. Biological evolution accounts for the diversity of species developed through gradual processes over many generations. As a basis for understanding this concept, students know:
 - **a.** both genetic variation and environmental factors are causes of evolution and diversity of organisms. Sections 7-1, 30-1, 30-2, 30.3, page 638
 - **b.** the reasoning used by Darwin in making his conclusion that natural selectin is the mechanism of evolution.

Sections 7-1, page 639

c. how independent lines of evidence

- from geology, fossils, and comparative anatomy provide a basis for the theory of evolution.
 Sections 7-1, 7-2, 7-3, 29-1, 29-2, 30-1, 30-2, 30-3, page 639
- **d.** how to construct a simple branching diagram to classify living groups of organisms by shared derived characteristics, and expand the diagram to include fossil organisms. Sections 7-1, 7-3, page 640
- **e.** extinction of a species occurs when the environment changes and the adaptive characteristics of a species are insufficient for its survival. Sections 30-1, 30-2, 30-3, page 640

Earth and Life History (Earth Science)

- 4. Evidence from rocks allows us to understand the evolution of life on Earth. As a basis for understanding this concept, students know:
 - **a.** Earth processes today are similar to those that occurred in the past and slow geologic processes have large cumulative effects over long periods of time.

 Sections 27-1, 27-2, 27-3, 27-4, 29-3, page 643
 - **b.** the history of life on Earth has been disrupted by major catastrophic events, such as major volcanic eruptions or the impact of an asteroid. Sections 29-2, pages 643, 646
 - c. the rock cycle includes the formation of new sediment and rocks.

 Rocks are often found in layers with the oldest generally on the bottom.

 Sections 7-2, 27-1, 27-2, 27-3, 27-4, 29-2, pages 643 644
 - **d.** evidence from geologic layers and radioactive dating indicate the

- Earth is approximately 4.6 billion years old, and that life has existed for more than 3 billion years. Sections 7-2, 29-3, page 634
- **e.** fossils provide evidence of how life and environmental conditions have changed. Sections 7-2, 29-1, 29-2, 30-1, 30-2 30-3, page 634
- f. how movements of the Earth's continental and oceanic plates through time, with associated changes in climate and geographical connections, have affected the past and present dirtribution of organisms.

 Sections 30-1, 30-2, 30-3, page 645
- **g.** how to explain significant developments and extinctions of plant and animal life on the geologic time scale. Sections 30-1, 30-2, 30-3, page 645

Structure and Function in Living Systems

- 5. The anatomy and physiology of plants and animals illustrate the complementary nature of structure and function.

 As a basis for understanding this concept, students know:
 - a. plants and animals have levels of organizati9on for structure and function, including cells, tissues, organs, organ systems, and the whole organism.

 Sections 2-1, 2-2, 5-1, 17-2, 18-1, 18-2, 18-3, 19-1, 19-2, 20-1, 20-2, 20-3, 21-1, 21-2, 21-3, 22-1, 22-2, 22-3, 27-1, page 648
 - b. organ systems function because of the contributions of individual organs, tissues, and cells, tissues, and cells. The failure of any part can affect the entire system.

 Sections 13-2, 13-3, 17-2, 18-1, 18-2, 18-3, 19-1, 19-2, 22-2, 22-3, pages 649, 653
 - c. how bones and muscles work together to provide a structural framework for movement..
 Sections 13-1, 13-2, page 649
 - **d.** how the reproductive organs of the human female and male generate eggs and sperm, and how sexual activity may lead to fertilization and pregnancy.

 Sections 21-1, 21-2, page 650
 - **e.** the number and types of organisms an ecosystem can support depends on the resources available and abiotic factors, such as quantity of light and water, range of temperatures, and soil composition.

- Sections 21-2, page 651
- **f.** the structures and processes by which flowering plants generate pollen and ovules, seeds, and fruit. Section 5-2, page 650
- **g.** how to relate the structures of the eye and ear to their functions. Section 20-2, page 651

Physical Principles in Living Systems (Physical Science)

- Physical principles underlie biological structures and functions. As a basis for understanding this concept, students know.
 - **a.** visible light is a small band within a very broad electromagnetic spectrum. Section 23-1, page 654
 - **b.** for an object to be seen, light emitted by or scattered from it must enter the eye. Sections 23-1, 23-2, page 654
 - **c.** light travels in straight lines except when the medium it travels through changes. Sections 20-2, 23-3, page 654
 - d. how simple lenses are used in a magnifying glass, the eye, camera, telescope, and microscope.

 Sections 2-1, 23-3, 23-4, pages 654 655
 - **e.** white light is a mixture of many wavelengths (colors), and that retinal cells react differently with different wavelengths. Sections 20-2, 23-1, page 655
 - **f.** light interacts with matter by transmission (including refraction), absorption, or scattering (including reflection).
 Sections 23-1, 23-2, 23-3, page 655
 - **g.** the angle of reflection of a light beam is equal to the angle of incidence.

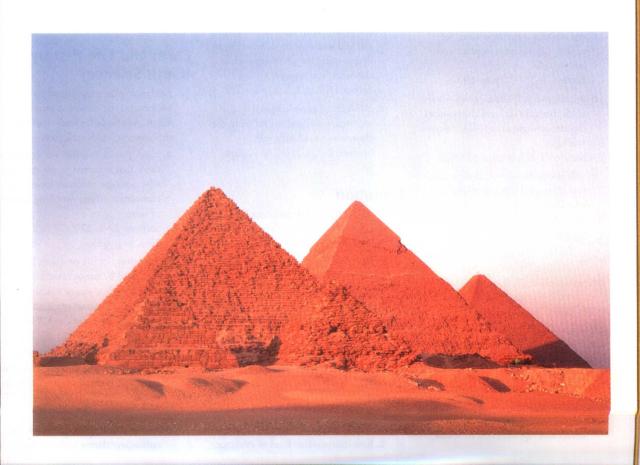
 Section 23-2, page 656
 - h. how to compare joints in the body (wrist, shoulder, thigh) with structures used in machines and simple devices (hinge, ball-and-socket, and sliding joints).

 Section 13-1, page 656
 - i. how levers confer mechanical advantage and how the application of this principle applies to the musculoskeletal system. Sections 13-2, 25-2, page 656
 - j. contractions of the heart generate blood pressure, and heart valves prevent backflow of blood in the

circulatory system. Section 18-1, page 657

Investigation and Experimentation

- 7. Scientific progress is made by asking meaningful questions and conducting careful investigations. As a basis for understanding this concept, and to address the content the other three strands, students should develop their own questions and perform investigations. Students will:
 - **a.** select and use appropriate tools and technology (including calculators, computers, balances, spring scales, microscopes, and binoculars) to perform tests, collect data, and display data.


 Sections 1-1, 1-2, 1-3, 2-1, 2-3, 6-3, 7-1, 13, 2-17, 1-18, 2-19, 2-22
 - Sections 1-1, 1-2, 1-3, 2-1, 2-3, 6-3, 7-1, 13-2, 17-1, 18-2, 19-2, 23-3, 24-3, 25-1, 25-2, pages 628, 638, 655
 - b. utilize a variety of print and electronic resources (including the World Wide Web) to collect information as evidence as part of a research project.

 Sections 1-1, 2-3, 3-1, 3-2, 4-1, 4-3, 5-1, 5-2, 6-1, 6-3, 7-1, 7-2, 13-1, 17-1, 18-1, 18-2, 19-1, 19-2, 20-
 - 1, 17-1, 16-1, 16-2, 19-1, 19-2, 20-1, 20-3, 21-1, 21-2, 21-3, 22-2, 22-3, 23-4, 24-2, 24-3, 25-2, 26-2, 28-2, 28-3, 29-2, 29-3, 30-1, 30-2, 30-3, pages 630, 634, 637, 638, 639, 642, 644, 645, 649, 653, 655
 - **c.** communicate the logical connection among hypothesis, science concepts, tests conducted, data collected, and conclusions drawn from the scientific evidence.
 - Sections 1-2, 2-1, 5-2, 7-1, 17-2, 19-1, 20-2, 22-2, 25-2, pages 630, 635, 637, 638, 639, 650, 657
 - **d.** construct scale models, maps and appropriately labeled diagrams to communicate scientific knowledge (e.g., motion of Earth's plates and cell structure).

 Sections 1-2, 4-3, 6-1, 6-2, 7-1, 15-
 - Sections 1-2, 4-3, 6-1, 6-2, 7-1, 15-1, 15-2, 21-3, 26-2, 30-2, 30-3, pages 630, 631, 635, 638, 639, 643
 - **e.** communicate the steps and results from an investigation in written reports and verbal presentations. Sections 2-1, 2-2, 3-2, 5-2, 6-2, 13-2, 17-2, 18-3, 19-1, 21-2, 23-1, 24-2, 25-2, 26-2, 27-1, 29-1, 30-1, pages 69, 95, 121, 463, 519, 571, 628, 633, 635, 647, 651, 656, 785, 817, 847, 907, 971

Contents in Brief

IINIT E	Interactions in the Physical World	782
	Lights, Mirrors, and Lenses	784
the second second	Motion and Forces	816
	Work and Simple Machines	846
	Electricity	874
Chapter 20	Licetricity	
UNIT 6	Earth Materials and Resources	904
	Rocks	906
Chapter 28	Resources and the Environment	938
unit 7	Change Through Time	968
	Clues to Earth's Past	970
•	Geologic Time	1000

Contents

	UNIT /	Inte	ractions in the Physical World	782
	Chap	oter 23	Light, Mirrors, and Lenses	784
A. Carrier		23-1 23-2	Properties of Light	
		23-3	a Plane Mirror	800
		23-4	Convex Lens Microscopes, Telescopes, and Cameras Science & Math CEOGRAPHIC	806
6	6 6			
	Char	oter 24	Motion and Forces	816
		24-1	How does speed change?	
		24-2	Why do things fall?	824
		24-3	How do things move?	
			Activity 24-2 On the Internet: Making a Paper Airplane	840

Contents

Chapter 25	Work and Simple Machines	846
25-1	What is work?	848
	Activity 25-1 Building the Pyramids	853
25-2	Simple Machines	854
	How it Works GEOGRAPHIC	863
	Activity 25-2 Design Your Own Experiment: Pulley Power	864
	FIELD GUIDE to Machines	866
Chapter 26	Electricity	874
26-1	Static Electricity	876
26-2	Electric Current	883
	Activity 26-1 A Model for Voltage	222
26-3	and Current	888 890
20-3	Activity 26-2 Current in a Parallel Circuit	898
	Science & Society	899

Earth Materials and Resources 904 UNIT **Rocks** Chapter 27 906 The Rock Cycle 27 - 1908 Activity 27-1 Igneous Rocks 912 27-2 Igneous Rocks 914 27-3 Metamorphic Rocks 919 27-4 Sedimentary Rocks 923 Science & Society GEOGRAPHIC 931 Activity 27-2 Sedimentary Rocks 932 Chapter 28 Resources and the Environment 938 28-1 Natural Resources 940 28-2 Conservation and Wildlife Protection 946 Reading & Writing in Science Geographic . . . 953 Activity 28-1 Is it biodegradable? 954 28-3 Maintaining a Healthy Environment 956 Activity 28-2 Modeling the 963

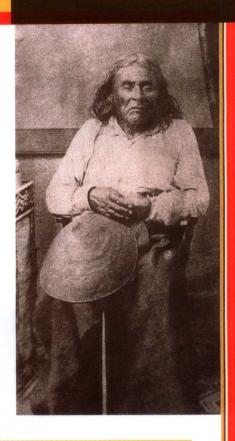
UNIT 7	/ Cha	ange Through Time 90	68
Ch	apter 29	Clues to Earth's Past 9	70
	29-1	Fossils	972
	29-2	Relative Ages of Rocks	980
		Activity 29-1 Relative Age Dating	987
		History of Science Geographic	988
	29-3	Absolute Ages of Rocks	989
		Activity 29-2 Radioactive Decay	994
Ch	apter 30	Geologic Time 10	00
	30-1		002
	30-2		010
			017
		NATIONAL	018
	30-3		019
		Activity 30-2 On the Internet:	
			026

Contents

Appendic	es	1032
Appendix A	Safety in the Science Classroom	1033
Appendix B	SI/Metric-to-English Conversions	1034
Appendix C	International System of Units	1035
Appendix D	Care and Use of a Microscope	1036
Appendix E	Classification	1037
Appendix F	Minerals	1041
Appendix G	Rocks	1043
Appendix H	Topographic Map Symbols	1044
Appendix I	Weather Map Symbols	1045
Appendix J	Star Charts	1046
Technolog	y Skill Handbook	1068
Skill Activ	vities	1077
Glossary		1086
Spanish G	ilossary	1092
Index		1099

Science Connections

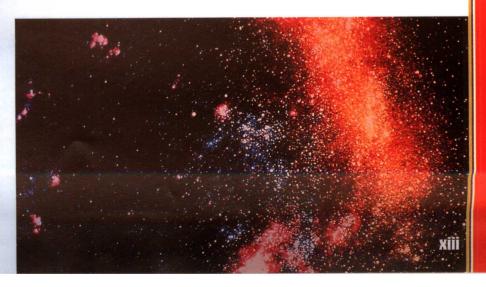
NATIONAL GEOGRAPHIC


Science & Society

Building In Safety	839
Energy Sources	899
Energy from Waste Coal	931
Fast Track to Extinction	018

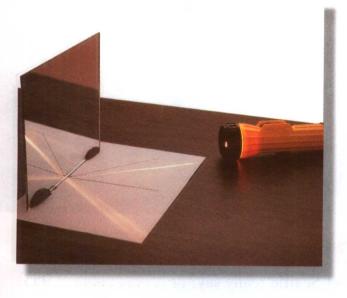
Science & Math

Scientific Notation 811


Reading & Writing in Science

What did Chief Seattle really say?..... 953

History of Science


How it Works

Using Electronic Calculators..... 863

Activities

23-1	Reflection from a Plane	5 00
	Mirror	799
23-2	Image Formation by a	
	Convex Lens	804
24-1	Time Trials	823
24-2	On the Internet: Making a	
	Paper Airplane	840

25-1	Building the Pyramids	853
25-2	Design Your Own Experiment Pulley Power	
26-1	A Model for Voltage and Current	888
26-2	Current in a Parallel Circuit	898
27-1	Igneous Rocks	912
27-2	Sedimentary Rocks	932

28-1	Is it biodegradable?		
28-2	Modeling the Greenhouse Effect	963	
29-1	Relative Age Dating	987	
29-2	Radioactive Decay	994	
30-1	Changing Species	1017	
30-2	On the Internet: Discovering the Past	1026	

Mini ab

23	Viewing Colors Through Color Filters	790
	Forming an Image with a Lens	802
24	Inferring Free Fall	828
	Measuring Friction	831
25	Observing Mechanical Advantage—Pulleys	860
26	Analyzing Electric Forces	877
	Lighting a Bulb with One Wire	885
27	Changing Rocks	909
	Classifying Sediments	924

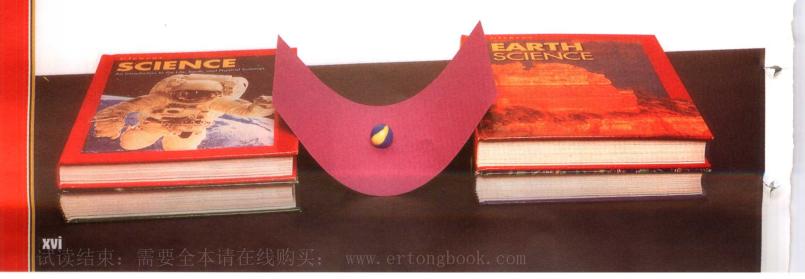
28	Measuring Acid Rain	958
29	Sequencing Earth's History	990
30	Measuring Seafloor	
	Spreading	1023

Try at Home Mini Lab 1765

25	Measuring Work and Power	851	29	Predicting Fossil	
28	Observing Mineral Mining			Preservation	973
	Effects	941	30	Interpreting Rock Layers	1013

Explore Activities

23	Observe Light Bending	785
24	The Marble Skateboard	
	Model	817
25	Compare Forces	847
26	Observe Electric Forces	875
27	Determine What Rocks	
	Are Made Of	907
28	Model Topsoil Loss	939
29	Model a Fossil	971
30	Make a Time Scale of	
	Your Life	1001



Problem Solving

24	Illustrating Force	832
25	Calculating Work	858
26	The Cost of Using Electricity	894
27	Observing Changes	0)1
	in Rocks	928

23 Radio Telescopes 809

28	Why should you repair	
	a leaky faucet?	957
29	Interpreting Scientific	
	Illustrations	985
30	Skull Structures	1014

