

DISTRIBUTED COMPUTER
CONTROL SYSTEMS 1983

Proceedings of the Fifth IFAC Workshop
Sabi-Sabi, Transvaal, South Africa, 18-20 May 1983

Edited by
M. G. RODD

University of the Witwatersrand
Johannesburg, South Africa

Published for the
INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL

by
PERGAMON PRESS
OXFORD - NEW YORK - TORONTO - SYDNEY - PARIS - FRANKFURT

U.K.
U.S.A.

CANADA

AUSTRALIA
FRANCE

FEDERAL REPUBLIC OF
GERMANY

Pergamon Press Ltd., Headingten Hill Hall, Oxford OX3 0BW, England
Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.

Pergamon Press Canada Ltd., Suite 104, 150 Consumers Road, Willowdale,
Ontario M2} 1P9, Canada -

Pergamon Press (Aust.)Pty. Lid., P.O. Box 544, Potts Point, N.S.W. 2011, Australia
Pergamon Press SARL, 24 rue des Ecoles, 75240 Paris, Cedex 05, France

Pergamon Press GmbH, Hammerweg 6, D-6242 Kronberg-Taunus,
Federal Republic of Germany

Copyright © 1984 IFAC

All Rights Reserved. No pant of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape,
mechanical, photocopying, recording or otherwise, without permission in writing from the
copyright holders.

First edition 1984

Library of Congress Cataloging in Publication Data

Main entry under title;

Distributed computer control systems 1983.

Proceedings of the IFAC Workshop on Distributed Computer Control Systems, sponsored by
the International Federation of Automatic Control Computer Committee. Includes index.

I. Automatic control — Data processing — Congresses. 2. Electronic data processing —
Distributed processing —Congresses.

I. Rodd, M. G. II. International Federation of Automatic Control. III. [IFAC Workshop on
Distributed Computer Control Systems (5th : 1988 : Sabi-Sabi, South Africa)

IV. International Federation of Automatic Control. Computer Committee.

Tj212.2.D57 1984 629.8'95 83-19494 .

British Library Cataloguing in Publication Data)

IFAC Workshop (3th : 1983 : Sabi-Sabi)

Distributed computer control systems 1983 — (IFAC proceedings series)

1. Automatic control — Data processing — Congresses 2. Electronic data processing —
Distributed processing — Congresses

L. Title II. Rodd, M. G. Iil. International Federation of Automatic Control IV. Series
629.8'95 TJ212

ISBN 0-08-080546-6

These proceedings were reproduced by means of the photo-offset process using the manu-
scripts supplied by the authors of the different papers. The manuscripts have been typed
using different typeuwniters and typefaces. The lay-out, figures and tables of some papers dfd
not agree completely with the standard requirements; consequently the reproduction
does not display complete untformity. To ensure repid publication this discrepancy could not
be changed; nor could the English be checked completely. Therefore, the readers are asked
to excuse any deficiencies of this publication which may be due to the above mentioned
reasons

The Editor

Printed in Great Britain by A. Wheaton & Co. Lid., Exeter

IFAC WORKSHOP ON DISTRIBUTED COMPUTER
CONTROL SYSTEMS 1983

Organized by
The South African Council for Automation and Computation (SACAC)
The Council for Mineral Technology (MINTEK)

Sponsored by
The International Federation of Automatic Control Computer Committee (COMPCON)

International Program Commuittee National Organizing Commuttee E
R. W. Gellie, Australia (Chairman) M. G. Rodd (Chairman)

J. Gertler, Hungary W. P. Gertenbach

T. J. Harrison, U.S.A. L. F. Haughton

A. Inamoto, Japan I. M. MacLeod

Lan Jin, China N. J. Peberdy

H. Kopetz, Austria . G. Sommer

S. Narita, Japan - A. B. Stewart

M. Sloman, U.K. - L. van der Westhuizen

G. Suski, U.S.A.

B. Tamm, U.S.S.R.
J. D. N. van Wyk, South Africa
D. Waye, Canada

PREFACE

One of the greatest values of holding a
series of annual Workshops on a given topic
is the way in which the growth of an idea
can be highlighted at its various develop-
mental stages. This has certainly been true
of the IFAC Workshops on Distributed Compu-
ter Control Systems, and the Fifth in the
series has upheld the tradition. Although
attendance at each Workshop has been domi-~
nated by participants from the host country,
there is a core of authors, of very varied
backgrounds, who have presented papers which
may appear superficially to be widely diver-
gent. Nevertheless, particularly in the
discussion sessions, a common thread of
fundamental principles runs through.

The current Workshop was notable for the
general agreement which became evident in a
number of areas. Probably the most signifi-
cant was the wide acceptance of the vital
role of Real regl-time in a distributed
gsystem. There aré differing views on imple-
mentation, but it has become clear that Real
real-time must be a fundamental considera-
tion in the planning of all future DCCS
architectures.

Communication' systems, and the protocols
involved, also received much attention.
Again, there was, inevitably, some disagree-
ment over issues such as broadcast messages
and addressing techniques; also the types of
messages required: state, event, immediate,
consistent, etc. In spite of confusion over
the exact requirements for a generalized

vi

approach, many common concepts are being
developed. The actual communication media
to be used provoked much discussion, and the
work of the IEEE-802 Conmittee is having a
serious impact - as is PROWAY.

Another aspect which continues to be of
great interest is the language question, as
increasing numbers of users are looking
beyond FORTRAN. ADA is generally being
hailed as a major development, despite some
reservations over the interprocess communi-
cation primitives available.

Finally, the issue of fault-tolerance recur-
red, to the extent that many delegates to
this event felt that a Distributed Computer
Control System should, by definition, be
fault-tolerant!

The Workshops have been noted for their high
standard of papers, and the 5th Workshop
maintained this level. The policy of
inviting the bulk of the authors, and of
accepting only a limited number of papers
has paid dividends. Such presentations, in
the Workshop situation, lead to fruitful
discussion which is in many ways the
highlight of the entire exercise. The Sabi
Sabi venue, remote and highly unusual, pro-
vided an ideal environment for such debate.
It is the Editor's hope that readers of the
edited discussions contained in these Pro-
ceedings will benefit from that stimulating
exchange of ideas.

WELCOMING ADDRESS

G. Brown

President of the South African Council for Automation and Computation.
AECI Limited, PO Box 796, Germiston, South Africa

It is my sincere pleasure, to welcome you
~all to the 5th IFAC Workshop on Distributed
Computer Control Systems. I especially
welcome our overseas delegates who have
taken the time and trouble to travel great
distances to join us here at Sabi-Sabi.

It seems to me that it is most appropriate
that this Workshop should be held in South
Africa at this time. Whilst South Africa is
clearly a developing country and is still
small in the industrial sense, we are, I
believe, a technologically progressive
nation. For example, I think we can lay
claim to one of the largest installed pro-
prietary Distributed Control Systems any-
where in the world, referring, of course, to
the Sasol II and III oil from coal plants.
For those of you with knowledge of these
huge plants, it is inconceivable to think
that they could be successfully controlled
without the facilities provided by Distri-
buted Computer Control Systems. Several
other processing industries in this ‘country
are also users of Distributed Control Sys-
tems on a significant scale.

In parallel with this growing local indus-
trial application of proprietary DCCS, the
past few years have seen the vigorous growth
of important research work in this field at
our Universities and other institutions and

ix

notable results have already been achieved
by this research. Thus, we now have in
South Africa the beginning of an excellent
environment for cross fertilisation of ideas
between experienced and imaginative indus-
trial users and highly competent research
and development teams.

The Sabi-Sabi Workshop thus provides a time-
ly platform for many South African workers
in this field to exchange ideas with our
esteemed overseas delegates and thus add an
international dimension to the beginning of
the local environment of cross fertilisation
of ideas.

A Workshop of this type does not occur
without considerable effort being expended
by many people, and.I cannot let this oppor-
tunity pass without expressing my thanks to
all concerned. In particular I must thank
the authors for their work in preparing the
pepers, without which the Workshop could not
take place. Our thanks are also due to the
International Program Committee, under the
Chairmanship of Warren Gellie for selecting
a set of papers which are clearly of high
standard. Finally, on behalf of SACAC, I
would like to thank Mike Rodd and his Na-
tional Organizing Committee for a tremendous
job well done!

CONTENTS

Welcoming Address
G. Brown '

SESSION 1 - FOUNDATIONS FOR DCCS t
Chairman: R.W. Gellie .

The Distributed Data Flow Aspect of Industrial Comédter Systems
R. Guth and Th. Lulive d'Epinay y
Discussion

Real Time in Distributed Real Time Systems
H. Kopetz

Discussion

A Hierarchical Model for Distributed Multi~Computer Process-Control Systems
¥.r'. Gerteniach

Discussion

SESSION 2 ~ CURRENT APPLICATIONS
Chairman: T.J. Harrison

Distributed vs. Centralized Control for Profit
M. Maxwell
Discussion

Large Scale Control System for the Most Advanced Hot Strip Mill
M. Mihara, A. Ogasawara, C. Imamichi and A. Inamoto

Discussion

SESSION 3 - REAL TIME ISSUES
Chairman: K.W. Plegsmann

A Message Based DCCS
4. Kopetz, F. Lolmert, W. Merker and G. Pauthner

Discussion

Experignce with a High Order Programming Language on the Development of the
Nova Distributed Control System

F.W. Hollovay, G.J. Sugk: and J.M. Duffy

Discussion

vii

ix

21

36

39

44
45

57

59

71

73

85

viii CONTENTS

Data Consistency in Sensor-Based Distributed Computer Control Systems
I.M. MacLeod

Discussion

SESSION 4 - COMMUNICATION IN DCCS
Chairman: Th. Lalive d'Epinay

IEEE Project 802: Local and Metropolitan Area Network Standards
T.J. Harrison
Discussion

A Flexible Communication System for Distributed Computer Control
M. Sloman, J. Kramer, J. Magee and K. Twidle

Discussion

SESSION 5 - FUNCTION DISTRIBUTION
Chairman: H. Xopetz

Task Assignment across Space and Time in a Distributed Computer System
M.A. Salichs

Discussion

A Distributed Computer System on the Basis of the Pool-Processor Concept
K.W. Plegssmann

Discussion

ROUND-TABLE DISCUSSION: LOCAL APPLICATIONS OF DCCS
Chairman: N.J. Peberdy

A Distributed System for Data Collection on a Blast Furnace
P.G. Stephens and D.J. MeDonald

The Synergism of Microcomputers and PLCs in a Network
I. Brown and E.F. Bosch

Discussion

Author Index

87

92

97

114

115

128

131

141

143

156

159

171

182

185

Copyright © IFAC Distributed Computer Control Systems 1983

Sabi-Sabi, South Africa, 1988

THE DISTRIBUTED DATA FLOW ASPECT OF
INDUSTRIAL COMPUTER SYSTEMS

R. Giith and Th. Lalive d’Epinay
Brown Boveri Research Center, CH-5405 Baden, Switzerland

Abstract. Today's computer systems are in general based on the von Neu-
mann type architecture. However, there also exist alternative architectures,
for example dataflow systems and (quasi-) continuous systems.

This paper presents a new type of computer architecture which is based on
broadcast principle and on source addressing. This system can be viewed as
a combination and generalisation of dataflow and continuous systems. It has
some inherent advantages over the classical architecture, but there are also
some difficulties in efficient implementation. A concept has been established
which allows to implement broadcast systems efficiently and hence to utilize
their advantages.

There already exist distributed process contro! systems based on the broad-
cast and source addressed architecture. Ongoing research work in the field
of fundamental concepts and their efficient implementation will broaden the
scope of these systems and make them applicable in a wide range of process

SESSION 1 — FOUNDATION FOR DCCS

control and other applications.

Keywords. Dataflow system; control

system; continuous system; broadcast

system; source addressing; communication ether.

A DATAFLOW VIEW OF CONTROL SYSTEMS

Most of today's computer systems for com-
mercial as well as for process control appli-
cations are based on a conventional, von
Neumann type architecture. As will be
shown in this paper, an alternative archi-
tecture has many advantages. We will pre-
sent a logical model of an architecture that
is derived from and will cover two extremes:

1) Dataflow systems: This concept is mainly
known and propagated by a relatively
small group of computer scientists. De-
spite its theoretical advantages it has
only been practically used for special
applications.

2) Continuous systems (analogue computer):
This concept is well known by control
engineers. The introduction of digital
processors has pushed away this concept
at least from the realization level of com-
puter control systems.

Dataflow System

A dataflow language has no concepts of
variables and explicit control flow: a pro-
gram is a set of data activated functions
connected by unidirectional data paths. tn a
dataflow program the order of function exe-

cutions is not defined explicitely (by the
control structure of a procedural program),
but derived implicitely from the datafiow
that is related to the computation (Acker-
mann, 1982; Agerwala, 1982; Davis, 1982;
Dennis, 1979; Treleaven, 1982).

function
a
o - c
b c:= f(a,b) .
° .
buffer

Fig. 1: Element of a dataflow program
The dots (a and b present, c ab-
sent) represent the condition which
allow firing of the operation f

Fig. 1 shows an element of a datafiow pro-
gram, where an output ¢ is computed by
execution of a function f(a,b). The execu-
tion of a function consumes all input values
and produces an output value. A function

2 R. Giith and Th. Lalive d'Epinay

is executed only if all input values exist
(have been produced) and the output is
empty (has been consumed). This execution
condition is called firing rule. A dataflow
program is defined by interconnecting sev-
eral functions.

Function interconnections can be considered
as buffers. By writing a result value a
buffer content is produced and by reading
a buffer its content is consumed. Function
executions are controlled by the associated

buffers, i.e. function execution is data
driven.

Continuous System

In a continuous system an output funtion is
continuously computed from an input func-
tion. As long as the boundary frequency of
the operator is sufficiently high compared
to the relevant frequencies of the signals, a
continuous system is an ideal tool for control
and simulation purposes. It is a natural
extension of a physical process.

A continuous system can be regarded as a
dataflow system with continuous firing or in
a first approximation, with periodic firing
with a sufficiently small period (Fig. 2).

a(t)
——————— 4
c(t) = e(t)
————)
N EAGRIO)
b(t)
PR

Fig. 2: Continuous System

Quasi-Continuous Systems

Some modern microcomputer-based distri-
buted control systems can be considered as
quasi-continuous systems. In such systems
continuQus control functions are realized
approtghately by algorithms and executed
on microcomputer-based controflers in suf-
ficiently short cycles. There is usually no
need for a strict producer/consumer rela-
tionship of values, as it is found in data-
flow systems. Rather, function executions
are normally time cycle driven and function
resuits update previously generated values.
That is, functions communicate via (memory)
celis: by writing a new value into a cell
the cell content is updated, by reading a
cell the cell content is not destroyed (Fig.
3).

time cycle

I | a

]] c
¢ = £(a,b) —ﬂ
D—b—. cell

Quasi-continuous system

Fig. 3:

Examples

For the sake of illustrating the application
of a (pure) dataflow machine and a quasi-
continuous system let's have a short look at
two typical applications:

1) bank transaction

A bank transaction can be impiemented
by a dataflow program with the implicit
firing rule: the input values must be
present, they are consumed and produce
an output value. The operation has to be
executed exactly once, it may not be
repeated nor left out (Fig. 4).

b

dp b
ﬂ ' nav
BT ‘

b

Fig. 4: Symbolic representation of a bank
transaction as a dataflow program.

BT = bank transaction:

AF = access functions of the account
data base

b = buffer

dp = deposit

av = account value
nav = new account value

2) process control

A PID control algorithm is a typical ex-
ample of an operation, which can be exe-
cuted quasi-continuously (or as often as
possible, using an appropriate integration
and differentiation method). (Fig. S)

The Distributed Data Flow Aspect 3

ec ‘

sV ———FD—’ av

sp

P

Fig. 5: Representation of a control func-
. tion in a quasi-continuous system

PID = PID control function

P = physical process

c = cell

sp = set point

ec = execution cycle

sv = sensor value

av = actuators value

BROADCAST SYSTEMS

Motivation

In the following we introduce a type of di-
stributed computer system that has some
features in common with dataflow systems.
We call these systems Broadcast Systems.

The motivation for broadcast systems is to
provide an operational principle that facili-
tates the construction/configuration of large
software systems from predefined building
blocks (programming in the large). The
building blocks are assumed to be represent-
ed by program modules that are internally
implemented in pgocedural high-level lan-
guages (programming in the smalitl).

The building blocks from which large pro-
grams are constructed, are expected to be
maintained in a module catalogue. The user
is free to enhance the catalogue by user-
defined module types. Modules can represent
simple functions, type managers (abstract
data types), etc. (see Fig. 6). The cata-
logue provides module types from which
instances are created and added to the al-
ready existing part of the software system
(see Fig. 7). At program runtime the mo-
duies are equipped with work space and can
be considered as processes, monitor pro-
cesses, type managers, etc.

We should recall here the preconditions for
an extensive use of predefined modules:

-~ The modules have to be independent from
the environment, i.e. in particular from
the hardware ang software configuration.

function

A:= F(E)
—— E A -
F
process
* |
| a:= G(E,S)
—eeied E A : ——
G,H I s:= H(E,S)
| |
S,

type manager (abstract data type)

TTTTT T Ay
} G, (E,,S)
——-—-—-—21 Al -
| S:=
o Tis } B, (E,,S)
| |
| i "
| %, (2,,9)
E —
é H | 5=
g) ; Hy (E,,S)
b 5]
Fig. 6: Examples of program modules
E = input
A = output
S = internal state
G, H = functions

= A uniform framework has to be provided
for the interconnection of modules.

The second precondition is a strong demand
for appropriate computer architectures.

Basic {deas

The basic concept of broadcast systems is a
communication ether which provides all re-
sources necessary for the transmission of
values. All values have a unique source and
are available wherever needed.

For the sake of simplicity we will restrict
the following discussion to simple functions

function type

ec
iy A
C o
F
—{ B 1
instance
t > 500
fl *
a A ec
C -—c>
b Fl
——p{ B

Fig. 7: Creation of an instance from a
function type

F1 = function type
A,B,C = formal parameters
f1 = function instance
a,b,c = actual parameters
ec = execution condition

instead of general modules. To each func-
tion an execution condition is associated
that defines the precondition for the execu-
tion of the function. The execution condi-
tion can be expressed in the form of a boo-
lean expression on all data available in the
ether including time. If and only if the exe-
cution condition is satisfied the associated
function will be executed (Fig. 8).

r T /7
£> 500
i
a
2, c
. fl.—->
b

R. Giith and Th. Lalive d'Epinay

Data’ that are results of function execu-
tions, are broadcast in messages with source
identification. Thus, data are globally acces-
sible within the ether. All functions listen to
transmitted messages and receive only those
that are required for their inputs.

Let us summarize the advantages of that
simple and robust operational principle for
the interconnection and cooperation of funce-
tions and program modules:

+ there are no side effects of function
executions
- a side effect is the change of a value
that is not explicitely associated with
an output parameter of a function

« there is no risk in having all values
globally known

- there is no need for scope rules and
for passing access rights

+ the approach facilitates the
- incremental construction of software

szstems '

- extension of running software systems

« there is a natural support of backward
error tracing and the identification of
fault sources by
- source identification of values,

- definition of execution conditions

Fig. 9 illustrates the extension of an exist-
ing program, given in Figure 8, by an addi-
tional function. Obviously, the introduction
of the new function does not affect the ori-
ginal program.

—
I t > 500 introduction of I
l a an additional ‘
I —— . c_ function |
—= 1
' b S b = 100
c>3 A Atime> 10 f I
e f' > — g > |
2
- " :
' Atime >5
| u, a |
Ry |
c t I
' a ='3 AwW<3 '
| Y . !
| . |

Fig. 9: Extension of the program given
in Fig. 8

The Distributed Data Flow Aspect 5

Let us introduce another mode! that is part-
ly equivalent to the communication ether:
the source addressed memory. The source
addressed memory is similar to a conven-
tional memory, with the exception that each
cell is associated exclusively to one source,
i.e. to one writer. A cell can be read by
arbitrary functions of the program, using
the appropriate source identifica}_i_op

T I
source id | type | value
I |
] |
source id | type | value
!
b e] L
source id | type | value
L 1 !

.
.
.

Fig. 10: Model of source-addressed memory

We present the mode! of source-addressed
memory to emphasize the differences between
function cooperation in the small and in the
large. Conventional memories provide. highly
flexible and unrestricted means for storing
and exchanging information. Since addresses
can be created in unrestricted ways, cells
of conventional memories can be changed
from everywhere in the program system.
Thus, side effects cannot be prevented and
fault sources are difficult to localize. Fea-
tures that should be tolerated only within
small program units.

We feel that different mechanisms should be
provided for programming in the smali and
software function interconnection in the
farge.

Realization of Broadcast Systems

A communication ether can be realized
straightforwardly in distributed computer
systems. Results of function execution are
broadcast in messages with source identi-
fication. These messages are sent over a
communication network and, thereby, are
made available to all node computers con-"
nected to the network.

Within the node computers dedicated func-
tional units perform particular operations on
the communication ether:

- An associative receiver listens to all the
messages on the network and copies only
those data in its internal memory that
are needed by the node computer

- An execution condition evaluator per-
manently evaluates the execution condi-
tions of the functions installed on the
node computer.

- A transmitter broadcasts the resuits of
function executions. The broadcast me-
chanism supports consistent, simultane-
ous updates of memory cells at different
places. The commitment of result values
is atomic, i.e. either all receiving node
computers perform an update or no node
does.

The interconnected functions are executed
on processors that are part of the node
computers. Fig. 11 gives an impression of
the internal structure and organization of
the node computers.

We should point out that message broadcast
allows effective use of the communication
network because one 1:n transmission pe-
places n 1:1 (point to point) transmissions.
The execution time overhead of associative
message receiving and execution condition
evaluation is kept small by the dedicated
hardware units.

The key issue of the communication system
is: how to establish acknowiedge of broad-
cast messages. Since the number of receiv-
ers is both variable and unknown, the solu-
tion is the logical or of negative acknowl-
edgements. That raises a second gquestion:
how to detect a dead receiver that cannot
even send a negative acknowledge. That
problem is solved by letting each node com-
puter send its negative acknowledge signat
regularly. This is then checked by one or
more dedicated supervising units.

Programming Environment

As the control-engineer is used to formuiate
his problem in a way very similar to a data-
flow program, he programs the system gra-
phicatly, using off-site CAD-systems or
on-site interactive programming stations,
which become more and more efficient and
economical.

It is also important to realize that it is pos-
sible to convert automatically and unambigu-
ously a machine program into a graphic re-
presentation and vice-versa without the
need of any additional, auxiliary graphical
information.

- The module types are realized internally
in procedural high level languages and
compiled into machine code over micro
code for high-performance functional
units. This is the working field of the
system specialist. It is "programming in
the small", where the overall size of the
program is limited, independent of ai}
others and of course also application-
independent. This allows to optimize im-
plementations of the operations.

- The application system, which may be
distributed over more than 10'000 func-
tional units, is programmed by the appli-
cation engineer in a non-procedural,
possibly graphical tanguage as described

communication network

R. Giith and Th. Lalive d'Epinay

A node computer
t > 500

execution

condition —4+ execution control a '
evaluator £ : t>500 —— c

e e 1 £ |
fZ: c>3 A Atime > 10 —
b

associative _l,.

input values:

receiver a,b,c,t,u c>3 A Atime > 10
cb__. N —— '
t b
. 1 saman od
transmitter -e{— output values: £
2
bie,w processor —-‘“ _>w

broadcast of messages with source identification

message: source id type value
node computer
i . . time > 5
exe:‘.x:}on execution control A
coNCLELON _tm £ : Atime>5 i
- evaluator 3 u a
£f:a=3Ay<3 i e
TSR peu—— 4 f3
—.W S
jati c t
associative _f,. input values:
receiver tou.w
] a,c,t,u, a=3Aw<3
e~ — — — i
v
transmitter wef— output values: — p u
a,t,u 4 -
processor ——t
t

\Y

Fig. 11: Realization of broadcast systems

above ("programming in the large"). The
principle of source-identification makes it
possible that the distribution of the pro-
gram over the physical modules (func-
tional units) is totally transparent and
can change, even while the system is
running. This flexibility is very helpful,
because it allows to write the application
software before the hardware configura-
tion is known. The advantage for recon-
figuration and expansion of control
system is obvious.

PERSPECTIVES

We have presented the concept of broadcast
systems. Even in process control systems
the full potential of the concept has not yet
been totally used. Some additional and very

precise work has to be done to prove the
usefulness of the concept for a much wider
range of applications. The field of process
control, hopefuily in a much wider range
than up to now, will remain the main applic-
ation of the concept at least for a certain
time.

Corresponding research work is done and
the resuits are expected to provide major
impact for future systems.

PRESENT SYSTEMS

A consequent implementation of broadcast
aspects has been realized in different pro-
ducts of Brown Boveri & Co., e.g. in the
systems PROCONTROL, PARTNERBUS and
BBC-Kent P4000. This is not the place to

The Distributed Data Flow Aspect

————————— - 1B
[
L
?
<= , —>
I D I T S
<:__"T _______ I 7 T
| | |
Y Y Y
1/0 1/0 P
L N] ‘
S S A A
X///_‘\\\\
AN T
|
\\ physical process /
N /
~ e
\\ ___,//

Fig. 12: Simplified view of the BBC-PROCONTROL System

Process Input and/or Output, including control and/or data

Processing Unit (Process Control, DDC, local man-process

between process and control system

S = Sensor
A = Actuator
1/0 =
processing functions
P =
interface, local man-computer interface)
PB = physical boundary
LB = logical boundary

give a detailled product description; there
exists an appropriate documentation. As
these products are mainly used by the com-
panies' own application departments and

because the advantages of the broadcast.

concepts are not expected to be widely
known in the field of process control applii-
cations these systems are not explicitely
known as broadcast systems. Nevertheless,
their inherent advantage over seemingly
similar systems is based on this concept.

The systems are specialized according to
the hierarchical structure of a process con-
trol system.

The system PROCONTROL is optimized to
handie process data and to communicate
them to and from programmable controllers
(representing node computers) and process
data input/output equipment.

The communication ether realized by the
system PROCONTROL has the effect of mov-
ing the logical boundary between physical
process and computer control system into

the computer control system (Fig. 12). This
means that sensor values, independent of
the location of their generation, are availab-
le wherever needed in the control system
and that the actuator values, again inde-
pendent of the module of their computation,
will reach the appropriate actuators. All
functions of the system are free of side
effects; the system can be programmed with-
out knowing how the functions will be di-
stributed among the physical modules and
where these modules will be placed. The
system itself is structured to allow efficient
solutions for systems ranging from relative-
ly small to very large applications. (The
largest system being installed contains more
than 5'000 node computers.)

All modules 'of the system contain associative
receivers and transmitters. The communica-
tion within the system as well as the execu-
tion of the functions is oriented towards
efficient quasi-continuous behaviour: The
signals are communicated whenever they
have changed; the amount of change which
triggers a broadcast can be selected and is

8 R. Giith and Th. Lalive d'Epinay

combined with minimal and maximal delays,
so that a signal on one hand does not satu-
rate the communication network and on the
other hand is sent regularly, even if there
was no or not sufficient change.

The communication protocol includes a com-
mon acknowledge of all connected modules
as previously described.

The system includes some interesting fea-
tures: it can be built up completely redun-
dant without need of any specific programm-
ing; if the system is cut the separated parts
immediately begin to work independently.

The.bARTNERBUS system is oriented to-
wards ' the communication of minicomputer-
like and mainframe-like node computers. It
implements the communication functions of
the presented broadcast system, i.e. asso-
ciative receiver and transmitter. The node
computers can set up tables which define
‘the signals that have to be received and
the location in memory where this inform-
ation has to be stored. They also define the
names and values of the outgoing signals.
The broadcast aspect can be restricted to
the communication system to allow optimal
modularity between nodes that internally are
used conventionally. This allows even inte-
gration of a Partnerbus system into existing
systems without changing their original
operating systems (e.g. VAX/VMS*),

The BBC Kent P4000 System makes use of
the broadcast concept to achieve a extremely
flexible combination of packaged subsystems.
This allows to tailor systems to the custom-
er's need with minimal cost.

CONCLUSION

The concept of a broadcast architecture has
some potential advantages over conventional
systems. The practical exploitation of the
concept has so far been believed to be re-
stricted to a few special applications. In the
field of process control the concept has
been used successfully and corresponding
products exist; a more general use is not
unlikely in the the future.

ACKNOWLEDGEMENT

We want to express our gratitude to our
colleagues in the research center, whose
contributions were very helpful and con-
structive. In particular J. Kriz and S.
Ziiger have directly contributed to this work
and are involved in ongoing activities.

*) VAX and VMS are trademarks of
DIGITAL EQUIPMENT CORPORATION

REFERENCES

Ackermann, W.B. (1982). Data Flow Langu-

ages. Computer, Vol. 15, No. 2, pp.
15-25.

Agerwala, T., Arvind. (1982). Data Flow
Systems. Computer, Vol. 15, No. 2, pp.
10-13.

Davis, A.L., Keller, R.M. (1982). Data
Flow Program Graphs. Computer, Vol. 15,
No. 2, pp. 26-41.

Dennis, J.B. (1979). The Varieties of Data
Flow Computers. Proc. 1st Int. Conf.
Distributed Computing Systems, New
York, {EEE, pp. 430-439.

Treleaven, P.C., Brownbrigde, D.R., Hop-~
kins, R.P. (1982). Data-Driven and
Demand-Driven Computer Architecture.
ACM Computing Surveys, Vol. 14, No. 1,
pp. 93-143.

DISCUSSION

Sloman: I can see a possible problem in
using global names. Firstly, you appear to
lose some abstraction, and secondly, you
have a problem of managing your name-space.
If you have to manage global source identi~
fiers in & very large system, such as you
refer to in your paper, it appears to be
very difficult to choose names which are
unique. How can this be overcome?

Lalive d'Epinay: This does not present any
problem. The Power Systems people, for
example, have a naming concept which is
older than computer control systems, in
which the name of a variable is uniquely
defined by the geographical location in the
building as well as the precise location of
the place where the signal is created. In
such a system there is no problem, since,
from the beginning of the design, it is
totally clear what the name of any variable
is. They have a very large name-space in
which they use only a very few possibili-
ties: this is one of the reasons why the
systems which we have developed have 24-bits
of address space on the communication bus
system. There are, however, possibly other
areas of application where there is a prob-
lem. One of these arises in the case that I
did not mention in my presentation, and that
is the recognition of duplicate source iden-
tifications. This is typically built into
the hardware and you can try out the name if
you want, and the system will be able to
tell you whether the name is already used:or
not. Of course the whole management of
variable names and the names of signals on
the cables has to be planned as part of the
integral solution.

MacLeod: You have told us that in your
approach there is a unique source for each
piece of information. Does this not elimi-
nate one of the advantages of distributed
control systems, and that is redundancy? In
other words, the ability to handle redundant
senders of information in the event of a
failure?

Lalive d'Epinay: This is also one of the
problems which is solved by our solution.
Let us say that you have redundant informa-
tion. In this case there must be some know-
ledge of this fact. Let us say, for exam-
ple, that a twin of the information exists.
Recognition of this redundancy is built into
the hardware - you can even have, for exam-
ple, the typed-description of one of the
products and you can see whether it is the
original, whether it is a back-up or whether
it is an engineer-supplied auxiliary value.
For example, if the measurement of a tempe~
rature is not functioning you could take the
redundant information as the temperature.
You can recognize that in the data field,
but, of course, you must know that twins or
triplicates exist. Another aspect is that
in a truly redundant system, the sensors are
duplicated so you effectively have two dif-
ferent values right from the very beginning.
They are treated differently. We can also
have a redundant communication system which
communicates every piece of information in a
duplicate form so that we have the same
information and the same source identifica-
tion on both of the communication systems.
It is undoubtedly a very complex problem
which has to be solved on each level appro-
priately, but in our solution it can be
approached in a very elegant fashion.

